
Optimization of string transducers

PhD Defense

Gaëtan Douéneau-Tabot
Under the supervision of Olivier Carton and Emmanuel Filiot

November 23rd, 2023

Motivation: program optimization

Summer “holidays” activities

Ï finishing PhD manuscript

Ï biking from Prague to Verona−→

Problem: using a phone as a GPS viewer, without reaching

Solution A: more battery =⇒ more space + more weight.

Solution B: more energy efficient GPS program.−→

Motivation of this thesis: program optimization

Given a program, automatically build a more efficient (with respect to
resources consumption) equivalent program.

→ Useful for systems with limited resources (bike?, satellite, etc.).

1

Example: optimization of nested loops

Ï Input: a 0/1 sequence denoted list.

Ï Output: number of pairs i ≥ j such that list[i] = list[j] = 0.

Computing pairs Doing a product

n := 0
for i from 1 to length(list) do

for j from 1 to i do
if list[i] =list[j] = 0 then
n := n+1

end
end
return n

n := 0
for i from 1 to length(list) do

if list[i] = 0 then n := n+1
end
return n(n+1)/2

Execution time ∼ length(list)2 Execution time ∼ length(list)

Pebble transducer Blind pebble transducer
Optimization procedure
[Manuscript, Chapter 6]

2

Formalization: class membership problems

Class membership problem from P to P ′

P class of programs

P ′ subclass of
efficient programs

Functions computed
by programs from P

Optimization
procedureFunctions computed

by programs from P ′

Ï Input: Program from P.

Ï Question: Does an equivalent program from P ′ exist ?
+ Effectively build this program.

Example: Removing nested loops

P programs with 2 nested loops, P ′ programs without nested loops.

3

Formalization: class membership problems for transducers

Class membership problems are often challenging

Ï Depend on the semantic and not to the syntax of programs.

Ï Quickly undecidable for classes of expressive programs.

Ï Heuristic approaches are used to avoid undecidability/complexity.

→ In this thesis: optimal results for classes of restricted programs.

Finite-state transducer

Ï finite state program;

Ï input: string, output: string.

1|1 2|2

2|21|1

0|ε0|0

→ In this thesis: restricted programs = extended transducers.

4

Outline

1. Background: transducers of finite strings

2. Nesting optimization within subclasses of pebble transducers

3. Pebble transducers with commutative output

4. Determinization for transducers of infinite strings

5. Outlook

5

Background: transducers of
finite strings

One-way transducers

Definition: one-way deterministic transducer

Read

Input string

Output string

Write

Finite set of
control states

→ Compute the class of sequential functions from strings to strings.

Example: first letter to last position 12345 7→ 23451

Definition: (functional) one-way non-deterministic transducer

→ Compute the class of rational functions from strings to strings.

Example: last letter to first position 12345 7→ 51234

6

Two-way transducers

Definition: two-way deterministic transducer

Read

Input string⊢ ⊣

Output string

Write

Finite set of
control states

→ Compute the class of regular functions from strings to strings.

Example: duplicating the input 12345 7→ 12345#12345

Example: reversing the input 12345 7→ 54321

Remark: non-determinism does not increase expressive power.

7

Pebble transducers

Definition: k-pebble transducers

Ï Nested two-way transducers with nesting depth k .

Ï A pebble is added to the input when doing a nested call.

→ Compute the class of polyregular functions.

Behavior of a 3-pebble transducer

Input word⊢ ⊣

Head machine

Input word⊢ ⊣
Submachine

pebble

Input word⊢ ⊣

Submachine
pebblepebble

8

Pebble transducers

Example: square 1234 7→ 1234#1234#1234#1234

can be computed by a 2-pebble transducer.

Example: unary product 1 . . .1︸ ︷︷ ︸
n

#1 . . .1︸ ︷︷ ︸
n′

#1 . . .1︸ ︷︷ ︸
n′′

7→ 1 . . .1︸ ︷︷ ︸
n×n′×n′′

can be computed by a 3-pebble transducer.

Asymptotic growth of the output

Ï A k-pebble transducer can be understood. . .
Ï either a program with functions calls of nesting depth k;
Ï or as a program with k nested (two-way) for loops.

Ï If a k-pebble transducer computes a function f , then:

|f (u)| =O(|u|k).

9

Known membership results

POLYREGULAR
Deterministic pebble transducers

SEQUENTIAL
One-way deterministic

transducers

RATIONAL
Functional one-way

non-deterministic transducers

REGULAR
Two-way deterministic transducers

[Engelfriet et al., 2021]
[Bojańczyk, 2022]

[Filiot et al., 2013]
[Baschenis et al., 2018]

[Choffrut, 1977]
[Weber and Klemm, 1995]

Ï All the statements are decidable + effective.

Ï The proofs are rather technical and use disparate methods.

10

Membership and output growth

Theorem: [Engelfriet et al., 2021, Bojańczyk, 2022]

Let f be a polyregular function, then |f (u)| =O(|u|) ⇐⇒ f is regular.

→ More generally, do we (effectively) have:
|f (u)| =O(|u|k) ⇐⇒ f can be computed by a k-pebble transducer?

Counterexample [Bojańczyk, 2023]

For all k ≥ 3, there exists a polyregular function f such that
|f (u)| =O(|u|2) but cannot be computed with less than k pebbles.

→ First part of this thesis: subclasses of pebble transducers where:
|f (u)| =O(|u|k) ⇐⇒ f can be computed by with k nested layers.
+ Decidable + Effective (nested loop optimization).

11

Nesting optimization within
subclasses of pebble transducers

Blind pebble transducers [Nguyên et al., 2021]

Definition: blind k-pebble transducer

Submachines have no information about the positions of the calls.

Behavior of a blind 3-pebble transducer

Input word⊢ ⊣

Head machine

Input word⊢ ⊣
Submachine

Input word⊢ ⊣

Submachine

Example: square 1234 7→ 1234#1234#1234#1234
12

Last pebble transducers [Engelfriet et al., 2007]

Definition: last k-pebble transducer

Submachines can only see the position in which they are called.

Behavior of a last 3-pebble transducer

Input word⊢ ⊣

Head machine

Input word⊢ ⊣
Submachine

pebble

Input word⊢ ⊣

Submachine
pebble

Example: marked square 1234 7→ 1234#1234#1234#1234
13

Marble transducers [Engelfriet et al., 1999]

Definition: k-marble transducer

Submachines are called on a prefix of the input.

Behavior of a 3-marble transducer

Input word⊢ ⊣

Head machine

Input word⊢ ⊣
Submachine

Input word⊢ ⊣

Submachine

Example: prefixes 1234 7→ 1#12#123#1234

14

Nesting optimization [Chapters 3 and 4]

Theorem: nesting optimization

Let 1≤ ℓ≤ k . The following are (effectively) equivalent:

1. f is computed by a blind k-pebble / last k-pebble / k-marble
transducer and |f (u)| =O(|u|ℓ);

2. f is computed by a blind ℓ-pebble / last ℓ-pebble / ℓ-marble.

+ Decidable membership problem.

Main proof ideas

Ï For blind pebble / last pebble transducers: transition monoids
+ factorization forests + pumping arguments.

Ï For marble transducers: correspondence with streaming string
transducers + classical techniques for weighted automata.

15

Overview: nesting optimization [Chapters 3 and 4]

Pebble transducers

Blind pebble transducers

Marble transducers

Recursive marble transducers

Last pebble transducers

Nesting optimization

Nesting optimization

Nesting optimization

Can we go beyond using output growth?

Ï No for other subclasses of pebble transducers.

Ï Yes for models with unbounded nesting depth (≡ recursion):
shown for marbles + conjectured for last pebbles.

16

Pebble transducers with
commutative output

Pebble transducers with output in N / Z [Chapter 5]

Definition: transducers with outputs in N / Z

Ï case of N: output alphabet is {1}, result is the length/sum;

Ï case of Z: output alphabet is {±1}, result is the sum.

Examples: pebble transducers with output in Z

Ï u 7→ (|u|0−|u|1)2 is computed by a (blind) 2-pebble transducer;

Ï u 7→ (−1)|u||u|3 is computed by a (blind) 3-pebble transducer.

Theorem: pebble ≡ last pebble ≡ marble

For k ≥ 1, k-pebble, last k-pebble and k-marble transducers with output
in N / Z (effectively) compute the same classes of functions.

17

Pebble transducers with output in N / Z [Chapter 5]

Theorem: subclass of rational series [implicit in folklore]

The following are (effectively) equivalent:

1. f is a N- / Z-rational series and |f (u)| =O(|u|k) for some k ≥ 1;

2. f is computed by a pebble transducer with output in N / Z.

+ Decidable membership problem.

Theorem: nesting optimization

Let 1≤ ℓ≤ k . The following are (effectively) equivalent:

1. f is computed by a k-pebble transducer in N/Z and |f (u)| =O(|u|ℓ);
2. f is computed by an ℓ-pebble transducer in N/Z.

+ Decidable membership problem.

Main proof ideas

For Z: tuples in factorization forests + multivariate polynomials.
18

Blind pebble transducers with output in N / Z [Chapter 6]

Example: squaring blocks 1n1#1n2# · · ·#1nm 7→
m∑
i=1

n2
i

cannot be computed by a blind pebble transducer.

→ Blind are less expressive than pebble ≡ last pebble ≡ marble.

Theorem: blind membership

The following are (effectively) equivalent:

1. f is computed by a pebble transducer in N/Z and is repetitive;

2. f is computed by a blind pebble transducer in N/Z.

+ Decidable membership problem + Commutes with optimization.

Main proof ideas

Previous tools + inductive techniques on polyregular functions.

19

Overview: transducers with output in N / Z [Chapters 5 and 6]

RATIONAL SERIES
Weighted automata

Two-way transducers

Blind pebble transducers
Nesting optimization

Pebble transducers
Last pebble transducers

Marble transducers
Nesting optimization

Membership

Membership
(cf. list example)

Membership

+ Multiple characterizations as subclasses of rational series.

20

Aperiodic automata and transducers

Definition: aperiodic automata/transducer

An automaton/transducer is aperiodic if its transition monoid is so.

→ Motivated by strong connections to logics/expressions
since the study of star-free expressions [Schützenberger, 1965].

Generic question: aperiodic class membership

Given a function, can it be computed by an aperiodic transducer?

→ Results for string-to-string sequential or rational functions
[Filiot et al., 2019], partial results for regular [Bojańczyk, 2014].

Example: pebble transducers u 7→ (−1)|u|×|u|
cannot be computed by an aperiodic pebble transducer.

21

Aperiodic pebble transducers with output in Z [Chapter 7]

Definition: smooth function

f is smooth if X 7→ f (uvXw) is a polynomial for X large enough.

Example: u 7→ (−1)|u|×|u| is not smooth.

Theorem: aperiodic membership

The following conditions are (effectively) equivalent:

1. f is computed by a pebble transducer with output in Z and smooth;

2. f is computed by an aperiodic pebble transducer with output in Z.

+ Decidable membership problem + Commutes with optimization.

Main proof ideas

Build by residuation (crucial: Z is a group) a nested canonical object
+ inductively translate smoothness into an aperiodicity property.

22

Determinization for transducers
of infinite strings

Transducers of infinite strings

Definition: transducers of infinite strings

Ï Input: infinite string, output: infinite string.

Ï Infinite execution + Büchi/Muller/parity acceptance conditions.

→ Motivation: transducers of infinite strings ≡ streaming algorithms.

Definition: deterministic regular functions

Computed by two-way deterministic transducers.

Example: normalization in base 10

09999 · · · 7→ 100000 · · · is rational but not deterministic regular.

SEQUENTIAL
One-way deterministic

transducers

RATIONAL
Functional one-way

non-deterministic transducers

DETERMINISTIC REGULAR
Two-way deterministic

transducers

REGULAR
Two-way deterministic transducers

+ ω-regular lookaheads

[Béal and Carton, 2004]

23

Transducers of infinite strings

Definition: transducers of infinite strings

Ï Input: infinite string, output: infinite string.

Ï Infinite execution + Büchi/Muller/parity acceptance conditions.

→ Motivation: transducers of infinite strings ≡ streaming algorithms.

Definition: deterministic regular functions

Computed by two-way deterministic transducers.

Example: normalization in base 10

09999 · · · 7→ 100000 · · · is rational but not deterministic regular.

SEQUENTIAL
One-way deterministic

transducers

RATIONAL
Functional one-way

non-deterministic transducers

DETERMINISTIC REGULAR
Two-way deterministic

transducers

REGULAR
Two-way deterministic transducers

+ ω-regular lookaheads

[Béal and Carton, 2004]

23

Two-way determinization of rational functions [Chapter 10]

Theorem: two-way determinization

The following are (effectively) equivalent:

1. f is rational and continuous;

2. f is rational and deterministic regular.

+ Decidable membership problem.

Main proof arguments

Composition of deterministic regular functions + Equivalence with
streaming string transducers + Original tree-based constructions.

Theorem: Continuity = computability [Dave et al., 2020]

Regular ∩ computable = regular ∩ continuous.

→ Rational ∩ deterministic regular = rational ∩ computable/continuous.
→ Conjecture: deterministic regular = regular ∩ computable/continuous.

24

Overview: transducers of infinite strings [Chapters 9 and 10]

COMPUTABLE
Turing machines

SEQUENTIAL
One-way deterministic

transducers

RATIONAL
Functional one-way

non-deterministic transducers

DETERMINISTIC REGULAR
Two-way deterministic transducers

REGULAR
Two-way deterministic transducers

+ ω-regular lookaheads

Membership

∅?∅?

+ Multiple characterizations of deterministic regular functions.

25

Outlook

Overview of contributions

Finite strings Infinite strings

Nesting optimization
for models of nested
two-way transducers

Membership problems
for nested transducers
with output in N or Z

Determinization result
+ study of deterministic
two-way transducers

[Manuscript, Part I] [Manuscript, Part II] [Manuscript, Part III]
[D-T, Filiot, Gastin,
2020], [D-T, 2023]

[D-T, 2021] [D-T,
2022] [Colcombet,
D-T, Lopez, 2023]

[Carton, D-T, 2022]
[Carton, D-T, Filiot,
Winter, 2023]

+ Semantic and syntactic characterizations of the classes.

+ Effective translations between several transducer models.

26

Present and future

Present: a toolbox for solving membership problems

Ï High-level strategies (syntax vs semantics).

Ï Low-level techniques (factorization forests, inductive methods for
polyregular functions, determinization constructions, etc.).

Future: research directions

Ï Over infinite strings, do we have:
deterministic regular ≡ regular ∩ continuous?

Ï Are canonical models really necessary for solving class membership
problems? In particular to study aperiodicity.

+ Multiple low-hanging conjectures available.

27

Thank you!

27

27

	Background: transducers of finite strings
	Nesting optimization within subclasses of pebble transducers
	Pebble transducers with commutative output
	Determinization for transducers of infinite strings
	Outlook

