Optimization of string transducers

PhD Defense

Gaëtan Douéneau-Tabot Under the supervision of Olivier Carton and Emmanuel Filiot November 23rd, 2023

Motivation: program optimization

Summer "holidays" activities

- finishing PhD manuscript
- biking from Prague to Verona

<u>Problem:</u> using a phone as a GPS viewer, without reaching <u>Solution A: more battery \implies more space + more weight.</u> <u>Solution B:</u> more energy efficient GPS program. \downarrow

Motivation of this thesis: program optimization

Given a program, automatically build a more efficient (with respect to resources consumption) equivalent program.

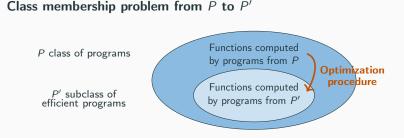
 \rightarrow Useful for systems with limited resources (bike?, satellite, etc.).

Example: optimization of nested loops

- Input: a 0/1 sequence denoted list.
- Output: number of pairs $i \ge j$ such that list[i] = list[j] = 0.

Computing pairs	Doing a product
$ \begin{array}{l} \mathbf{n} := 0 \\ \textbf{for i from 1 to length(list) do} \\ \left \begin{array}{c} \textbf{for j from 1 to i do} \\ \textbf{if list[i] = list[j] = 0 then} \\ \textbf{n} := \textbf{n+1} \\ \textbf{end} \\ \textbf{end} \\ \textbf{return n} \end{array} \right. $	$\begin{array}{l} n := 0 \\ \textbf{for i from 1 to } length(list) \textbf{ do} \\ \mid \textbf{if } list[i] = 0 \textbf{ then } n := n+1 \\ \textbf{end} \\ \textbf{return } n(n+1)/2 \end{array}$
Execution time ~ $length(list)^2$	Execution time ~ length(list)
Pebble transducer Optimization procedure [Manuscript, Chapter 6]	

Formalization: class membership problems



- ▶ Input: Program from *P*.
- <u>Question</u>: Does an equivalent program from P' exist ?
 + Effectively build this program.

Example: Removing nested loops

P programs with 2 nested loops, P' programs without nested loops.

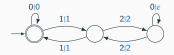
Formalization: class membership problems for transducers

Class membership problems are often challenging

- ► Depend on the semantic and not to the syntax of programs.
- ► Quickly undecidable for classes of expressive programs.
- ► Heuristic approaches are used to avoid undecidability/complexity.
- \rightarrow In this thesis: optimal results for classes of restricted programs.

Finite-state transducer

- finite state program;
- ▶ input: string, output: string.



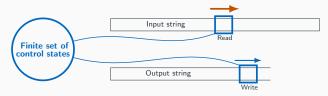
 \rightarrow In this thesis: restricted programs = extended transducers.

- 1. Background: transducers of finite strings
- 2. Nesting optimization within subclasses of pebble transducers
- 3. Pebble transducers with commutative output
- 4. Determinization for transducers of infinite strings
- 5. Outlook

Background: transducers of finite strings

One-way transducers

Definition: one-way deterministic transducer



 \rightarrow Compute the class of sequential functions from strings to strings.

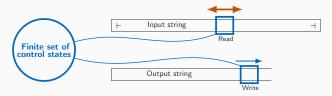
Example: first letter to last position $12345 \rightarrow 23451$

Definition: (functional) one-way non-deterministic transducer \rightarrow Compute the class of rational functions from strings to strings.

Example: last letter to first position $12345 \rightarrow 51234$

Two-way transducers

Definition: two-way deterministic transducer



 \rightarrow Compute the class of regular functions from strings to strings.

Example: duplicating the input $12345 \rightarrow 12345 \# 12345$ **Example: reversing the input** $12345 \rightarrow 54321$

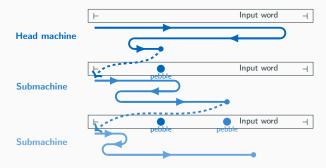
Remark: non-determinism does not increase expressive power.

Pebble transducers

Definition: k-pebble transducers

- ▶ Nested two-way transducers with nesting depth *k*.
- ► A pebble is added to the input when doing a nested call.
- \rightarrow Compute the class of polyregular functions.

Behavior of a 3-pebble transducer



Example: square $1234 \mapsto 1234 \# 1234 \# 1234 \# 1234$ can be computed by a 2-pebble transducer.

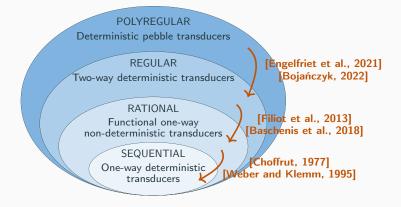
Example: unary product $\underbrace{1...1}_{n} \# \underbrace{1...1}_{n'} \# \underbrace{1...1}_{n''} \mapsto \underbrace{1...1}_{n \times n' \times n''}$ can be computed by a 3-pebble transducer.

Asymptotic growth of the output

- ► A *k*-pebble transducer can be understood...
 - either a program with functions calls of nesting depth k;
 - ▶ or as a program with *k* nested (two-way) for loops.
- ▶ If a *k*-pebble transducer computes a function *f*, then:

 $|f(u)| = \mathcal{O}(|u|^k).$

Known membership results



- ► All the statements are decidable + effective.
- ► The proofs are rather technical and use disparate methods.

Membership and output growth

Theorem: [Engelfriet et al., 2021, Bojańczyk, 2022]

Let f be a polyregular function, then $|f(u)| = \mathcal{O}(|u|) \iff f$ is regular.

→ More generally, do we (effectively) have: $|f(u)| = \mathcal{O}(|u|^k) \iff f$ can be computed by a *k*-pebble transducer?

Counterexample [Bojańczyk, 2023]

For all $k \ge 3$, there exists a polyregular function f such that $|f(u)| = \mathcal{O}(|u|^2)$ but cannot be computed with less than k pebbles.

→ **First part of this thesis:** subclasses of pebble transducers where: $|f(u)| = \mathcal{O}(|u|^k) \iff f$ can be computed by with *k* nested layers. + Decidable + Effective (nested loop optimization).

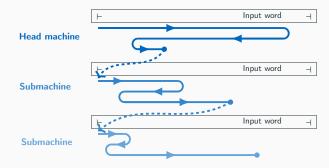
Nesting optimization within subclasses of pebble transducers

Blind pebble transducers [Nguyên et al., 2021]

Definition: blind k-pebble transducer

Submachines have no information about the positions of the calls.

Behavior of a blind 3-pebble transducer



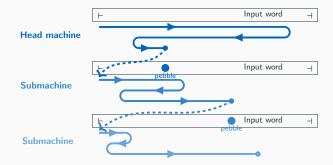
Example: square $1234 \mapsto 1234 \# 1234 \# 1234 \# 1234$

Last pebble transducers [Engelfriet et al., 2007]

Definition: last *k*-pebble transducer

Submachines can only see the position in which they are called.

Behavior of a last 3-pebble transducer



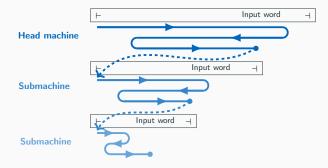
Example: marked square $1234 \mapsto \underline{1}234 \# \underline{1}\underline{2}34 \# \underline{1}2\underline{3}4 \#$

Marble transducers [Engelfriet et al., 1999]

Definition: k-marble transducer

Submachines are called on a prefix of the input.

Behavior of a 3-marble transducer



Example: prefixes $1234 \mapsto 1\#12\#123\#1234$

Nesting optimization [Chapters 3 and 4]

Theorem: nesting optimization

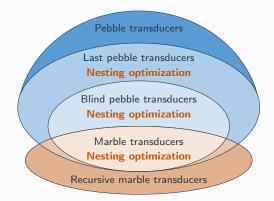
Let $1 \le \ell \le k$. The following are (effectively) equivalent:

- 1. *f* is computed by a blind *k*-pebble / last *k*-pebble / <u>k</u>-marble transducer and $|f(u)| = \mathcal{O}(|u|^{\ell})$;
- 2. *f* is computed by a <u>blind ℓ -pebble</u> / <u>last ℓ -pebble</u> / <u> ℓ -marble</u>.
- + Decidable membership problem.

Main proof ideas

- For blind pebble / last pebble transducers: transition monoids
 + factorization forests + pumping arguments.
- ► For marble transducers: correspondence with *streaming string transducers* + classical techniques for *weighted automata*.

Overview: nesting optimization [Chapters 3 and 4]



Can we go beyond using output growth?

- ▶ No for other subclasses of pebble transducers.
- Yes for models with unbounded nesting depth (≡ recursion): shown for marbles + conjectured for last pebbles.

Pebble transducers with commutative output

Pebble transducers with output in \mathbb{N} / \mathbb{Z} [Chapter 5]

Definition: transducers with outputs in $\mathbb N$ / $\mathbb Z$

- ▶ case of \mathbb{N} : output alphabet is {1}, result is the length/sum;
- ▶ case of \mathbb{Z} : output alphabet is $\{\pm 1\}$, result is the sum.

Examples: pebble transducers with output in $\ensuremath{\mathbb{Z}}$

- $u \mapsto (|u|_0 |u|_1)^2$ is computed by a (blind) 2-pebble transducer;
- ▶ $u \mapsto (-1)^{|u|} |u|^3$ is computed by a (blind) 3-pebble transducer.

Theorem: pebble \equiv last pebble \equiv marble

For $k \ge 1$, <u>k-pebble</u>, <u>last k-pebble</u> and <u>k-marble</u> transducers with output in \mathbb{N} / \mathbb{Z} (effectively) compute the same classes of functions.

Pebble transducers with output in \mathbb{N} / \mathbb{Z} [Chapter 5]

Theorem: subclass of rational series [implicit in folklore]

The following are (effectively) equivalent:

1. *f* is a \mathbb{N} - / \mathbb{Z} -rational series and $|f(u)| = \mathcal{O}(|u|^k)$ for some $k \ge 1$;

2. f is computed by a pebble transducer with output in \mathbb{N} / \mathbb{Z} .

+ Decidable membership problem.

Theorem: nesting optimization

Let $1 \le \ell \le k$. The following are (effectively) equivalent:

- 1. *f* is computed by a <u>k-pebble transducer</u> in \mathbb{N}/\mathbb{Z} and $|f(u)| = \mathcal{O}(|u|^{\ell})$;
- 2. *f* is computed by an ℓ -pebble transducer in \mathbb{N}/\mathbb{Z} .
- + Decidable membership problem.

Main proof ideas

For \mathbb{Z} : tuples in factorization forests + multivariate polynomials.

Blind pebble transducers with output in \mathbb{N} / \mathbb{Z} [Chapter 6]

Example: squaring blocks $1^{n_1} \# 1^{n_2} \# \cdots \# 1^{n_m} \mapsto \sum_{i=1}^m n_i^2$ cannot be computed by a blind pebble transducer.

 \rightarrow Blind are less expressive than pebble \equiv last pebble \equiv marble.

Theorem: blind membership

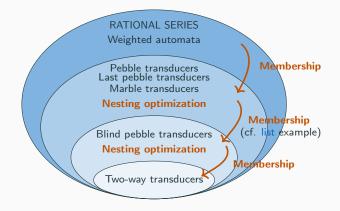
The following are (effectively) equivalent:

- 1. *f* is computed by a pebble transducer in \mathbb{N}/\mathbb{Z} and is repetitive;
- 2. *f* is computed by a blind pebble transducer in \mathbb{N}/\mathbb{Z} .
- + Decidable membership problem + Commutes with optimization.

Main proof ideas

Previous tools + inductive techniques on polyregular functions.

Overview: transducers with output in \mathbb{N} / \mathbb{Z} [Chapters 5 and 6]



+ Multiple characterizations as subclasses of rational series.

Aperiodic automata and transducers

Definition: aperiodic automata/transducer

An automaton/transducer is aperiodic if its transition monoid is so.

 \rightarrow Motivated by strong connections to logics/expressions since the study of star-free expressions [Schützenberger, 1965].

Generic question: aperiodic class membership

Given a function, can it be computed by an aperiodic transducer?

 \rightarrow Results for string-to-string sequential or rational functions [Filiot et al., 2019], partial results for regular [Bojańczyk, 2014].

Example: pebble transducers $u \mapsto (-1)^{|u|} \times |u|$

cannot be computed by an aperiodic pebble transducer.

Aperiodic pebble transducers with output in \mathbb{Z} [Chapter 7]

Definition: smooth function

f is smooth if $X \mapsto f(uv^X w)$ is a polynomial for X large enough.

Example: $u \mapsto (-1)^{|u|} \times |u|$ is not smooth.

Theorem: aperiodic membership

The following conditions are (effectively) equivalent:

- 1. *f* is computed by a pebble transducer with output in \mathbb{Z} and smooth;
- 2. f is computed by an aperiodic pebble transducer with output in \mathbb{Z} .
- + Decidable membership problem + Commutes with optimization.

Main proof ideas

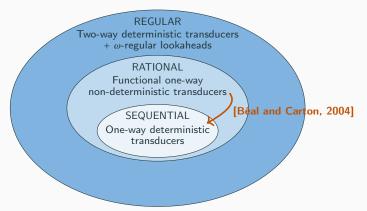
Build by residuation (crucial: \mathbb{Z} is a group) a nested canonical object + inductively translate smoothness into an aperiodicity property.

Determinization for transducers of infinite strings

Transducers of infinite strings

Definition: transducers of infinite strings

- ▶ Input: infinite string, output: infinite string.
- ► Infinite execution + Büchi/Muller/parity acceptance conditions.
- \rightarrow Motivation: transducers of infinite strings \equiv streaming algorithms.



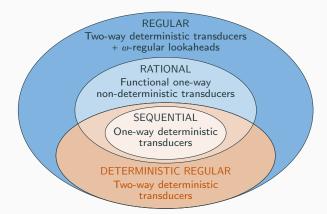
Transducers of infinite strings

Definition: deterministic regular functions

Computed by two-way deterministic transducers.

Example: normalization in base 10

 $09999 \dots \mapsto 100000 \dots$ is rational but not deterministic regular.



Two-way determinization of rational functions [Chapter 10]

Theorem: two-way determinization

The following are (effectively) equivalent:

- 1. *f* is <u>rational</u> and <u>continuous</u>;
- 2. *f* is rational and deterministic regular.
- + Decidable membership problem.

Main proof arguments

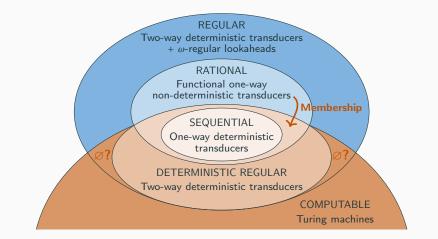
Composition of deterministic regular functions + Equivalence with *streaming string transducers* + Original tree-based constructions.

Theorem: Continuity = computability [Dave et al., 2020]

Regular \cap computable = regular \cap continuous.

- \rightarrow Rational \cap deterministic regular = rational \cap computable/continuous.
- \rightarrow **Conjecture:** deterministic regular = regular \cap computable/continuous.

Overview: transducers of infinite strings [Chapters 9 and 10]



+ Multiple characterizations of deterministic regular functions.

Outlook

Overview of contributions

Finite strings		Infinite strings
Nesting optimization for models of nested two-way transducers	Membership problems for nested transducers with output in \mathbb{N} or \mathbb{Z}	Determinization result + study of deterministic two-way transducers
[Manuscript, Part I]	[Manuscript, Part II]	[Manuscript, Part III]
[D-T, Filiot, Gastin,	[D-T, 2021] [D-T,	[Carton, D-T, 2022]
2020], [D-T, 2023]	2022] [Colcombet,	[Carton, D-T, Filiot,
	D-T, Lopez, 2023]	Winter, 2023]

+ Semantic and syntactic characterizations of the classes.

+ Effective translations between several transducer models.

Present and future

Present: a toolbox for solving membership problems

- ► High-level strategies (syntax vs semantics).
- Low-level techniques (factorization forests, inductive methods for polyregular functions, determinization constructions, etc.).

Future: research directions

- ► Over infinite strings, do we have: deterministic regular = regular ∩ continuous?
- Are canonical models really necessary for solving class membership problems? In particular to study aperiodicity.
- + Multiple low-hanging conjectures available.

Thank you!

##