
Université Paris Cité
École doctorale Sciences Mathématiques de Paris Centre (ED 386)

Laboratoire : Institut de Recherche en Informatique Fondamentale (UMR 8243)

Optimization of string
transducers

Par Gaëtan DOUÉNEAU-TABOT

Thèse de doctorat en informatique

Dirigée parOlivier CARTON
Et par Emmanuel FILIOT

Présentée et soutenue publiquement le 23/11/2023 devant un jury composé de :
Olivier CARTON, Professeur des Universités, Université Paris Cité, Directeur

Emmanuel FILIOT, Maître de Recherche FNRS, Université Libre de Bruxelles, Co-directeur

Mikołaj BOJAŃCZYK, Full Professor, University of Warsaw, Rapporteur

Anca MUSCHOLL, Professeure des Universités, Université de Bordeaux, Rapporteure

Nathalie BERTRAND, Directrice de Recherche, INRIA, Examinatrice

Pierre-Alain REYNIER, Professeur des Universités, Aix-Marseille Université, Examinateur

Paul GASTIN, Professeur des Universités émérite, ENS Paris-Saclay, Membre invité

Version of 8th December 2023

Dans l’optique des Castaliens, la vie du siècle était un élément
arriéré et de valeur secondaire, une existence de désordre et
d’instincts primitifs, fait de passions et de dispersion, sans beauté,
sans rien qui méritât le désir. Mais le siècle et sa vie étaient en vé-
rité infiniment plus grands et plus riches qu’un Castalien ne pou-
vait se les représenter, le monde était plein de devenir, d’histoire,
d’essais et d’éternels recommencements ; il était chaotique, mais il
était la patrie et le sol nourricier de tous les destins.

Hermann Hesse, Le Jeu des perles de verre
(trad. J. Martin)

Résumé en français

Titre : Optimisation de transducteurs sur les mots.

Résumé : Les transducteurs sont des machines à états finis qui calculent des fonctions (ou des rela-
tions) des mots vers les mots. Ils peuvent être considérés comme des programmes dont la mémoire est
limitée et qui manipulent des chaînes de caractères. Ces machines ont été étudiées depuis longtemps en
informatique fondamentale, au sein de la théorie des automates, et sont utilisées dans de nombreux do-
maines comme la compilation, le traitement des langages naturels, ou le traitement des flux de données.

Dans la littérature, de nombreuxmodèles de transducteurs ont été définis grâce à des fonctionnalités
qui permettent d’augmenter l’expressivité des machines (comme le non-déterminisme, la bidirectionna-
lité ou l’imbrication). Dans ce contexte, une question naturelle est celle de l’appartenance à une classe :
étant donnée une fonction calculée par un transducteur avec des fonctionnalités « complexes », peut-on
la calculer avec un transducteur « plus simple » ? Certains de ces problèmes ont déjà été résolus, et ils sont
en général considérés comme difficiles. D’un point de vue pratique, ils s’interprètent comme des ques-
tions d’optimisation de programmes : étant donné un programme qui utilise beaucoup de ressources,
peut-on construire un programme équivalent qui est « plus efficace » ?

Cette thèse propose de résoudre plusieurs problèmes d’appartenance entre des classes de transduc-
tions existantes, à la fois sur les mots finis et infinis. Les modèles bien connus de transducteurs bidirec-
tionnels et de transducteurs à jetons sont notamment étudiés. À chaque fois, la procédure d’appartenance
est non triviale, et elle s’avère effective (dans le sens où elle construit un transducteur « plus simple » dès
qu’il en existe un). C’est pourquoi les résultats de ce manuscrit peuvent être vus comme des techniques
d’optimisation de programmes. En outre, nous résolvons ces problèmes par une méthode générique ba-
sée sur l’utilisation de propriétés sémantiques (c’est-à-dire qui parlent intrinsèquement des fonctions) et
syntaxiques (qui parlent des transducteurs qui calculent ces fonctions).

Enfin, cette thèse fournit de nouveaux modèles et de nouvelles caractérisations pour décrire des
classes de transductions connues. Ces résultats améliorent et complètent la compréhensionde ces classes.
L’auteur est convaincu que les différentes techniques développées dans ce manuscrit fournissent une
boîte à outils pour étudier d’autres problèmes d’appartenance, qui sont encore ouverts.

Mots-clefs : automate fini, transducteur fini, transducteur bidirectionnel, transducteur à jetons, trans-
ducteur à registres, fonction rationnelle, fonction régulière, fonction polyrégulière, problème
d’appartenance à une classe, optimisation de programmes.

Abstract

Title: Optimization of string transducers.

Abstract: Transducers are finite-state machines which compute functions (or relations) from words
to words. They can be seen as simple programs with limited memory which manipulate strings. These
machines have been studied for long in fundamental computer science as a part of automata theory, and
are used in many areas such as compiling, natural language processing or stream processing.

Various transducermodels have been defined in the literature, thanks tomany features (such as non-
determinism, two-wayness or nesting) which enable to increase the expressive power of the machines.
In this setting, a natural question is to solve the related class membership problems: given a function
computed by a transducer with “complex” features, can it be computed by a “simpler” transducer? Some
of these problemshave been solved in the literature, using somehowdisparate proof techniques. They are
generally considered as difficult. In practice, such problems can be interpreted as program optimization
issues: given a program using a lot of resources, can we build a “more efficient” equivalent program?

This thesis solves variousmembership problems between existing classes of transductions, both over
finite or infinite words. Among others, the celebrated models of two-way transducers and pebble trans-
ducers are investigated in detail. Each time, the membership procedure is non-trivial and turns out to
be effective (in the sense that it builds a “simpler” transducer whenever it exists). Therefore our results
can be considered as program optimization statements. Furthermore, we offer a systematic high-level
strategy for solving these problems, which relies on semantic properties (i.e. dealing intrinsicallywith the
functions) as well as syntactic properties (referring to the transducers which compute these functions).

Additionally, this thesis provides new computationmodels and characterizations in order to capture
known classes of transductions. These results complete the previous understanding of these classes and
provide new insights on their expressive power. The author believes that the various techniques of this
manuscript form a rather extensive toolbox for investigating other open membership problems.

Keywords: finite-state automaton, finite-state transducer, two-way transducer, pebble transducer,
streaming string transducer, rational function, regular function, polyregular function, class membership
problem, program optimization.

Remerciements

Mes premiers remerciements vont à mes deux directeurs, Olivier et Emmanuel. En 2015, alors que
j’étais en prépa1, j’avais acheté le cours de langages formels d’Olivier [Car14] pour en savoir plus sur
les automates finis. J’ignorais alors que j’en viendrais à faire une thèse sur le sujet. Je remercie égale-
ment l’ensemble de mon jury de thèse (Anca, Mikołaj, Nathalie, Paul et Pierre-Alain) pour leurs retours
constructifs sur ce manuscrit, ainsi que pour nos nombreux échanges pendant ma soutenance.

Merci à la Direction générale de l’armement (DGA) et au corps des Ingénieurs de l’armement, qui
m’ont permis de réaliser cette thèse en parallèle de mon poste d’architecte à DGA Ingénierie & Projets. Je
remercie en particulier Patrick, Erwan, Didier, Thomas, Pascal et Alban. Merci également à tousmes col-
lègues du ministère, qui ont supporté mes digressions sur l’importance des transducteurs déterministes
bidirectionnels ou sur les carrières des docteurs dans l’administration publique française.

Cette thèse n’aurait probablement jamais vu le jour sans différents professeurs marquants de ma
scolarité: Frédéric E et Nicolas S au collège-lycée, et par la suite mes différents professeurs de langages
formels: Denis P en prépa, Paul et Sylvain2 à l’ENS Cachan, Olivier, Thomas, Jean-Éric et Jacques au
MPRI. J’ai en outre une pensée pour les encadrants de mes stages de recherche: à Rennes (Sophie et
François), à Aix-la-Chapelle (Erich) et à Bruxelles-Cachan-Paris-Saclay (Emmanuel et Paul). Merci éga-
lement aux nombreux chercheurs avec qui j’ai pu échanger des idées pendant mes trois années de thèse
(en particulier Aliaume, Cécilia, Thomas, Mikołaj, Nathan, Sandra, Sarah et Tito).

Merci à tous mes amis, notamment ceux qui ont été en doctorat en même temps que moi: Aliaume,
Dorian, Damien, Émilie, Julia, Laurent et Rebecca. J’ai une pensée spéciale pour Aliaume, mon co-
équipier sur les projets les plus insensés depuis 2015, toujours prêt à réfléchir sur la recherche, la pédago-
gie ou l’administration publique. Puisque tu sembles avoir choisi ta voie (même si d’autres horizons sont
toujours possibles), j’espère à mon tour que tu t’y plairas. Merci également à Laurent, mon co-équipier
sur d’autres projets insensés (de préférence de nuit et à pied). Émilie, maintenant que tu es à nouveau en
prépa, j’espère que nous trouverons tous le temps pour reprendre l’écriture d’un certain livre. Je pense
également à mes camarades de prépa (notamment Christophe, Clément, Côme, Maëlyne, Pierre, Solenn
et Vincent), avec qui j’ai partagé le sens de l’amitié autant que la joie des mathématiques. Enfin, merci à
Maria de m’avoir supporté pendant la rédaction de ces presque 300 pages.

Rien n’aurait été possible sans les conseils avisés de mes parents, et grâce à la patience de ma mère
dans ses nombreuses relectures de mes productions, qu’il s’agisse de rapports ou d’articles de recherche.
Je pense aussi et en particulier à mon grand-père Léon, qui m’a certainement donné le goût des sciences.

Enfin, je ne serais sans doute jamais venu à bout de la rédaction de mes travaux de recherche sans
les différentes œuvres, du baroque jusqu’au XXème siècle, que j’ai pu écouter en boucle3 devant mon
ordinateur. Un grand merci à France Musique qui me fait découvrir chaque jour de nouveaux titres.

1C’était une belle époque, dont je garderai toujours un souvenir émerveillé.
2Deux cours dans les styles assez différents, mais tous les deux limpides.
3Les boucles sont un concept important dans l’étude des automates finis.

6 REMERCIEMENTS

Jump to contents

Contents

Introduction en français 13

Optimisation de programmes et problèmes d’appartenance 13

Automates finis . 15

Transducteurs finis . 17

Problèmes d’appartenance pour les transducteurs . 19

Contributions de ce manuscrit . 21

Plan chapitre par chapitre . 27

Introduction 29

Program optimization and class membership problems 29

Finite automata . 30

Finite transducers . 32

Class membership problems for finite transducers . 35

Contributions of this manuscript . 37

Chapter by chapter outline . 42

How to read this document 43

I Optimization of pebble transducers 47

1 Background on transductions of finite words 49

1.1 One-way transductions . 50

1.1.1 Sequential functions . 50

1.1.2 Rational functions . 51

1.2 Regular functions . 54

1.2.1 Two-way transducers . 54

1.2.2 Normalization and origin semantics . 56

1.2.3 Two-way transducers with lookarounds . 57

1.2.4 Basic properties of regular functions . 58

8 CONTENTS

1.3 Polyregular functions . 59

1.3.1 Pebble transducers . 59

1.3.2 Robustness and variants of the model . 62

1.3.3 Basic properties of polyregular functions . 63

1.3.4 Asymptotic growth and optimization . 64

2 Frommonoid morphisms to factorization forests 67

2.1 Monoids and crossing sequences of two-way transducers 67

2.1.1 Transition morphisms of two-way transducers 67

2.1.2 Crossing sequences and productions . 69

2.2 Applications: pumping lemmas for two-way transducers 70

2.2.1 Deciding if a regular function has finite image 70

2.2.2 A pumping lemma for regular functions . 71

2.3 Factorization forests . 73

2.3.1 Simon’s theorem . 73

2.3.2 Iterable nodes and skeletons . 75

2.3.3 Node dependence . 76

3 Making pebbles invisible: blind and last pebble transducers 79

3.1 Blind and last pebble transducers . 80

3.1.1 Blind pebble transducers . 80

3.1.2 Last pebble transducers . 82

3.1.3 Optimization theorems and consequences . 84

3.2 Solving the optimization problem for blind transducers 85

3.2.1 Pumpable transducers and asymptotic growth 85

3.2.2 Removing a nested layer in a non-pumpable transducer 87

3.3 Solving the optimization problem for last transducers 90

3.3.1 Pumpable transducers and aymptotic growth 90

3.3.2 Removing a nested layer in a non-pumpable transducer 92

3.4 Discussion: beyond one visible pebble . 97

4 Streaming computations andmarble transducers 99

4.1 Marble transducers and recursion . 100

4.1.1 Marble transducers . 100

4.1.2 Recursive marble transducers . 102

4.1.3 Optimization theorems . 103

4.2 Streaming string transducers . 104

4.2.1 Streaming string transducers of finite words 104

Jump to contents

CONTENTS 9

4.2.2 Equivalence with recursive marble transducers and consequences 105

4.2.3 From streaming string transducers to recursive marble transducers 106

4.2.4 From recursive marble transducers to streaming string transducers 107

4.3 Layered streaming string transducers . 109

4.3.1 Copy restrictions for substitutions . 109

4.3.2 Equivalence with marble transducers . 111

4.3.3 From layered streaming string transducers to marble transducers 112

4.3.4 From bounded to layered streaming string transducers 113

4.4 Solving the optimization problem for streaming transducers 114

4.4.1 From streaming string transducers toN-weighted automata 114

4.4.2 Asymptotic growth ofN-weighted automata 116

4.4.3 Asymptotic growth in a DSST . 119

4.5 Discussion: recursion for other models . 119

II Class membership problems for commutative outputs 121

5 Polyregular functions with commutative outputs 123

5.1 Polyregular functions with commutative output . 124

5.1.1 Pebble transducers with commutative output 124

5.1.2 Counting transducers . 126

5.1.3 Equivalence between pebbles, marbles and counting 127

5.2 Rational series and membership problems . 129

5.2.1 Combinators for rational series . 129

5.2.2 S-polyregular functions as S-rational series 131

5.2.3 Optimization theorem for S-polyregular functions 131

5.3 Productions of counting transducers . 132

5.3.1 Productions over multisets of positions . 132

5.3.2 Productions over contexts . 133

5.3.3 Iterators and pumping lemmas . 135

5.4 Factorization forests for counting transducers . 137

5.4.1 Productions on multisets of nodes . 137

5.4.2 Productions on dependent multisets . 139

5.4.3 Productions on independent multisets . 140

5.5 Solving the optimization problem for counting transducers 142

5.6 Discussion: from Z-polyregular toN-polyregular . 144

Jump to contents

10 CONTENTS

6 Polyblind functions with commutative output 145

6.1 Polyblind functions with commutative output . 146

6.1.1 Blind pebble transducers with commutative output 146

6.1.2 Blind counting transducers . 147

6.1.3 S-polyblind functions as S-rational series . 148

6.2 Membership problem for S-polyblind functions . 149

6.2.1 Repetitive functions . 149

6.2.2 Decidability result of S-polyblind inside S-polyregular 150

6.3 Repetitive functions and permutable counting transducers 152

6.3.1 Polyblind functions are repetitive . 152

6.3.2 Repetitive functions are computed by permutable transducers 154

6.4 Architectures and independent multisets . 157

6.4.1 From linearizations to architectures . 157

6.4.2 Productions on architectures . 159

6.4.3 Counting the number of architectures . 160

6.4.4 Decomposing the independent sum . 165

6.5 Solving the S-polyblind membership problem . 165

7 Star-free polyregular functions with commutative output 167

7.1 Star-free polyregular functions with commutative output 168

7.1.1 Aperiodic pebble transducers . 169

7.1.2 Aperiodic counting transducers . 170

7.1.3 Star-free S-polyregular functions as S-rational series 171

7.2 Membership problem for star-free Z-polyregular functions 171

7.2.1 Smooth functions . 172

7.2.2 Decidability result of star-free inside Z-polyregular 172

7.3 Residual transducers for Z-polyregular functions . 174

7.3.1 Residuals of a function . 174

7.3.2 Suffix deterministic transducers . 176

7.3.3 Residual transducers . 177

7.4 Smooth functions and aperiodic residual transducers 180

7.4.1 Star-free functions are smooth . 181

7.4.2 Smooth functions are computed by aperiodic residual transducers 182

7.5 Solving the star-free membership problem . 183

7.6 Aperiodicity through the lens of eigenvalues . 184

7.6.1 Spectra for Z-polyregular functions . 185

7.6.2 Spectra for star-free Z-polyregular functions 186

7.7 Discussion: deciding star-freeness for other monoids 187

Jump to contents

CONTENTS 11

7.7.1 Star-freeN-polyregular functions . 187
7.7.2 Star-free regular functions . 188

III Streaming computability over infinite words 191

8 Background on transductions of infinite words 193

8.1 One-way transductions . 194
8.1.1 Sequential functions . 195
8.1.2 Rational functions . 197

8.2 Regular and deterministic regular functions . 201
8.2.1 Two-way transducers . 201
8.2.2 Two-way transducers with ω-lookaround . 202

8.3 Computability and continuity . 204

9 Deterministic regular functions of infinite words 207

9.1 Two-way transducers with finite lookarounds . 208
9.1.1 Finite lookarounds . 208
9.1.2 Lookbehinds and finite lookaheads . 209

9.2 Streaming string transducers of infinite words . 211
9.2.1 Streaming string transducers of infinite words 211
9.2.2 Domains and final conditions . 212
9.2.3 From copyless streaming string transducers to two-way transducers 213
9.2.4 From two-way transducers to bounded streaming string transducers 214

9.3 From bounded to copyless streaming string transducers 215
9.3.1 Properties of copies . 216
9.3.2 Toolbox: manipulating bounded substitutions 217
9.3.3 Construction of the copyless streaming string transducer 217
9.3.4 Correctness of the construction . 220

9.4 Removing finite lookaheads via streaming string transducers 220
9.4.1 Lookahead informations . 221
9.4.2 Construction of the streaming string transducer 222
9.4.3 Correctness of the construction . 224

9.5 Composition of deterministic regular functions . 225
9.6 Decomposition of deterministic regular functions . 227

9.6.1 Forward factorization forests . 228
9.6.2 A class of functions closed under composition 230
9.6.3 Inductive construction of the runs . 232
9.6.4 Decomposing deterministic regular functions 235

9.7 Discussion: pebbles and marbles of infinite words . 235

Jump to contents

12 CONTENTS

10 Determinization of continuous rational functions 239

10.1 Continuity of rational functions . 240

10.1.1 Two-way determinization of continuous rational functions 240

10.1.2 Continuity and twinning property . 241

10.2 Overall description of the determinization process . 243

10.2.1 Computing compatible sets . 244

10.2.2 Computing trees . 246

10.2.3 Computing the output . 248

10.3 Computing compatible sets . 249

10.4 Properties of compatible sets . 250

10.4.1 Common part and advances . 250

10.4.2 Separable compatible sets . 251

10.4.3 Looping futures in separable sets . 252

10.5 Computing (τ, θ)-trees from compatible sets . 254

10.5.1 Information stored by the one-way transducer 255

10.5.2 Updates of the one-way transducer . 256

10.5.3 Correctness of the construction . 259

10.6 Computing θ-trees from (τ, θ)-trees . 260

10.7 Computing the output from θ-trees . 261

10.7.1 Information stored by the streaming string transducer 261

10.7.2 Updates of the streaming string transducer . 262

10.7.3 Correctness of the construction . 264

10.8 Discussion: uniformly continuous rational functions 265

Outlook 267

Index 269

List of Figures 273

Bibliography 277

Jump to contents

Introduction en français

Oh ! ma France ! ô ma délaissée !

Louis Aragon, « Les Ponts-de-Cé », Les Yeux d’Elsa

Disclaimer: this chapter contains a French translation of the forthcoming Introduction chapter.
The reader is invited to preferentially read the English version of this chapter since the English
terminology (and not the French one) will be used in the rest of manuscript.

Optimisation de programmes et problèmes d’appartenance

L’optimisation de programmes consiste à modifier la syntaxe (l’implémentation) d’un programme afin de
le rendre plus efficace tout en préservant sa sémantique (son comportement). En pratique, « rendre plus
efficace » signifie souvent que le programmemodifié consommemoins de ressources (temps d’exécution,
mémoire, etc.). Ainsi, un algorithme de tri dont le temps d’exécution est asymptotiquementO(n log(n))
sur les entrées de taille n peut être vu comme une optimisation d’un algorithme de tri enO(n2).

Optimisation en pratique. Rendre les programmes les plus efficaces possible est essentiel en pra-
tique. D’une part, optimiser la consommation asymptotique de ressources est nécessaire pour que les
programmes puissent passer à l’échelle sur des entrées de grande taille. C’est le cas des programmes pour
flux de données, qui traitent une séquence arbitrairement longue d’éléments en quasi temps réel4. D’autre
part, il est possible de chercher des programmes efficaces sur les petites entrées5, auquel cas optimiser
la consommation exacte de ressources est plus pertinent que l’étudier asymptotiquement.

L’optimisation peut être effectuée à plusieurs niveaux d’abstraction, du point de vue algorithmique
(conception d’algorithmes et de structures de données) jusqu’au niveau du code machine (par exemple,
optimiser un code en assembleur pour le rendre plus efficace sur une architecture d’ordinateur donnée).
Toutefois, ce processus tend à complexifier le code, ce qui le rend plus difficile àmaintenir ou à déboguer.
Il est donc pertinent d’effectuer l’optimisation à la fin de la phase de développement, comme souligné
par Knuth dès les années 1970 : « l’optimisation prématurée est la racine de tous les maux » [Knu74]. En
complément de ces difficultés, l’optimisation manuelle d’un programme peut être une tâche longue (car elle
nécessite de réfléchir) et risquée (car elle peut introduire des bogues) pour le programmeur.

4De manière informelle, le programme ne dispose que de peu de temps et de mémoire pour traiter chaque élément.
5Un moyen simple d’optimiser le temps d’exécution d’un programme sur les petites entrées est de pré-calculer et de coder en

dur le résultat du programme sur toutes les entrées dont la taille est inférieure à une certaine borne. Cependant, cette construction
augmente fortement la taille du programme lui-même.

14 INTRODUCTION EN FRANÇAIS

Optimisation automatisée de programmes. Le paragraphe précédent milite en faveur de techniques
automatisées pour l’optimisation de programmes. Dans ce cadre, l’objectif est de concevoir un méta-
programme qui prend un programme en entrée et renvoie automatiquement un programme optimisé
ayant la même sémantique. Cette tâche peut être considérée comme une forme particulière de synthèse
automatique des programmes6, dans laquelle la spécification d’entrée serait déjà un programme.

Denombreuses optimisations automatisées (en particulier pour le code de bas niveau) sont déjàmises
en œuvre dans les compilateurs ou dans les processeurs7. Cependant, ces optimisations ne produisent
en général pas un code optimal (au sens où il n’existerait pas de « meilleur » code) : elles suivent plu-
tôt des méthodes heuristiques pour améliorer l’utilisation des ressources dans certains cas connus. Ces
heuristiques donnent déjà des résultats impressionnants en pratique (voir par exemple [Leu00]).

L’objectif pratique de ce manuscrit est de décrire des procédures d’optimisation qui garantissent
que le programme construit est toujours optimal8. Ces procédures supposent qu’une métrique a été
choisie au préalable pour comparer l’efficacité des programmes et ainsi définir ce que signifie « optimal ».
Des résultats classiques d’indécidabilité rendent rapidement impossible la construction d’un programme
optimal en général, c’est pourquoi nous restreindrons l’étude à des programmes « simples ».

De l’optimisation de programmes aux problèmes d’appartenance. D’un point de vue fondamen-
tal, l’objectif de ce manuscrit est d’étudier les problèmes d’appartenance à une sous-classe. Considérons
une classe P de programmes (par exemple, les programmes dont le temps d’exécution est polynomial
dans la taille n de l’entrée) et une sous-classe P’ ⊆ P de programmes cibles considérés comme « effi-
caces » (par exemple, les programmes dont le temps d’exécution estO(n)). Dans ce cadre, le problème
d’appartenance de P à P’ est formellement défini comme suit :

▶ Entrée : un programme π ∈ P dont la sémantique est une fonction f ;
▶ Question : est-ce qu’il existe un programme π′ ∈ P′ dont la sémantique est f ?

En d’autres termes, ce problème demande si une fonction de la « grande » classe C de la Figure 1 appar-
tient en fait à la « petite » classe C′. Il ne traite que de la sémantique et pas de la syntaxe.

Classe de fonctions C
calculées par les programmes de la classe P

Classe de fonctions C′
calculées par les programmes de P’

Figure 1: Représentation du problème d’apparence entre les classes P et P’.

Résoudre9 le problème d’appartenance signifie construire un algorithme qui répond automatique-
ment à la question lorsqu’on lui donne un programme π ∈ P en entrée. Un tel algorithme peut presque
être vu comme une procédure d’optimisation, à ceci près qu’il se contente d’indiquer si un programme
optimisé π′ ∈ P’ existe, mais il ne le construit pas explicitement. Néanmoins, pour tous les problèmes
d’appartenance à une classe qui sont résolus dans ce manuscrit, la preuve est effective et elle construit π′.

6La synthèse de programme consiste à construire un programme qui satisfait une spécification formelle donnée.
7De telles optimisations sont susceptibles de modifier la façon dont le processeur manipule sa mémoire, et donc de placer des

informations non spécifiées à des endroits inattendus. Sans trop de surprise, cette caractéristique peut créer des failles de sécurité,
comme récemment la vulnérabilité CVE-2022-40982 « downfall » sur les processeurs Intel.

8Dans ce cas, l’optimisation est parfois appelée superoptimization [Mas87], mais nous ne suivrons pas cette terminologie.
9Formellement, nous devrions dire « montrer que le problème d’appartenance est décidable ».

Jump to contents

15

Automates finis

Les programmes « simples » considérés dans ce manuscrit sont desmachines à états finis. Formellement,
une machine à états finis est un modèle de calcul qui possède un nombre fini d’états internes. A tout
moment de son exécution, elle est dans un certain état et effectue une transition d’un état vers un autre
lorsqu’elle lit un nouvel item d’entrée. Autrement dit, il s’agit de la description abstraite d’un programme
dont la mémoire de travail a une taille bornée, c’est-à-dire qu’elle ne dépend pas de la taille de l’entrée.
Des machines à états finis sont implémentées dans de nombreux dispositifs qui exécutent une séquence
prédéterminée d’actions, comme les distributeurs automatiques ou les automates industriels.

Automates finis et langages réguliers. Les automates finis déterministes sont une classe particulière de
machines à états finis dont l’entrée est un mot (une séquence de caractères à valeurs dans un ensemble
fini) et dont la sortie est soit « oui », soit « non ». Le mot d’entrée est parcouru de gauche à droite par
l’automate (cf. Figure 2) qui effectue une transition à chaque caractère lu. Ce modèle a de nombreuses
applications en informatique (notamment pour l’algorithmique des flux de données, l’algorithmique du
texte, la vérification formelle, la théorie du contrôle, les protocoles réseau, la conception de circuits
imprimés, etc.) et dans des domaines connexes comme la linguistique ou la bio-informatique.

Lecture

Mot d’entréeEtats de
contrôle

Figure 2: Fonctionnement d’un automate déterministe à un sens.

L’ensemble desmots d’entrée pour lesquels l’automate répond « oui » est appelé le langage calculé par
l’automate. Les langages calculés par les automates finis sont dits langages réguliers, et ils sont considérés
comme l’une des pierres angulaires de l’informatique fondamentale. Ils bénéficient de plusieurs des-
criptions équivalentes en termes d’expressions (les expressions régulières [Kle56]), de logique (la logique
monadique du second ordre [Büc60, Elg61, Tra62]) et d’algèbre (les monoïdes et congruences [Ner58]).

Automateminimal. Que signifie l’« optimisation de programmes » dans le cadre des automates finis ?
Un premier objectif peut être d’optimiser la mémoire utilisée par la machine. Dans ce cas, étant donné
un automate, nous cherchons à construire automatiquement un autre automate avec un nombreminimal
d’états qui calcule le même langage. Ce problème a été résolu depuis longtemps, par exemple avec les
algorithmes de Moore [Moo56] ou de Hopcroft [Hop71].

Étant donné un langage régulier, il existe en réalité un unique automate déterministe qui le calcule et
dont le nombre d’états est minimal. Cet unique objet est appelé l’automate minimal du langage. En consé-
quence, les algorithmes deminimisationmentionnés ci-dessus ne se contentent pas de réduire le nombre
d’états : ils construisent en fait un objet canonique (dans le sens où il ne dépend que du langage, mais pas
de l’automate qui a été donné en entrée) associé à un langage régulier donné. De manière générale, la
construction de modèles canoniques est très pertinente pour résoudre les problèmes d’appartenance,
car ces objets sont les mieux à mêmes de rendre explicites des informations qui sont propres à la séman-
tique. En outre, cette construction fournit une procédure pour décider si deux machines ont la même
sémantique (en les « canonisant » puis en comparant les résultats).

Problèmes d’appartenance à des sous-classes de langages réguliers. Une autre question impor-
tante dans la théorie des automates est de comprendre les sous-classes de langages réguliers définies en

Jump to contents

16 INTRODUCTION EN FRANÇAIS

restreignant l’une de leurs caractérisations (automates, expressions, logique ou algèbre). Naturellement,
« comprendre une classe » est un objectif informel, mais une manière classique d’y parvenir est de ré-
soudre le problème d’appartenance à la classe en question. En effet, les techniques développées dans ce
cadre permettent généralement d’obtenir des informations approfondies sur les sous-classes.

Cette approche a été initiée par Schützenberger [Sch65], qui a fourni une procédure d’appartenance
à la classe des langages sans étoile (une sous-classe des langages réguliers décrite10 par des expressions sans
étoile, qui sont une restriction des expressions régulières). Il s’avère qu’un langage régulier est sans étoile
si et seulement si son automate minimal vérifie une propriété syntaxique appelée apériodicité11. Puisque
cette propriété est décidable, le problème d’appartenance à la sous-classe peut donc être résolu. Dans la
littérature ultérieure, cette stratégie de preuve (examiner les propriétés syntaxiques de l’automate mini-
mal) a permis de résoudre de nombreux autres problèmes d’appartenance [Str94]. Ce sujet de recherche
est encore actif de nos jours et plusieurs problèmes restent ouverts (voir par exemple [Pin17]).

Au-delà des automates finis. De manière générale, ajouter des fonctionnalités simples au modèle
d’automate déterministe ne permet pas d’augmenter son expressivité. Nous mentionnons en particu-
lier les extensions suivantes du modèle de base (qui lui sont équivalentes) :

▶ les automates non déterministes, qui permettent de « deviner » une propriété de l’entrée pendant
une exécution, et d’en vérifier la validité par la suite. La transformation effective d’un automate
non déterministe en un automate déterministe est un exercice classique ;

▶ les automates bidirectionnels (déterministes ou non), qui peuvent se déplacer vers la droite et vers
la gauche sur leur entrée, alors que le modèle mentionné jusqu’à présent (que nous appellerons
désormais automate unidirectionnel) n’est capable que de se déplacer vers la droite (comparer la
Figure 3a et la Figure 3b). L’équivalence entre les deux provient de [She59] ;

Mot d’entrée

(a) Exécution d’un automate unidirectionnel.

Mot d’entrée⊢ ⊣

(b) Exécution d’un automate bidirectionnel.

Figure 3: Exécutions d’un automate unidirectionnel et d’un automate bidirectionnel.

▶ les automates imbriqués (bidirectionnels ou non) (déterministes ou non), qui peuvent appeler des
automates auxiliaires pendant leur exécution. Dans ce manuscrit, nous mentionnerons plus en
détail le modèle des automates à jetons12 tel qu’introduit dans [EH99].

Autrement dit, toutes les variantes « raisonnables » des automates déterministes ne calculent pas
mieux que les langages réguliers, ce qui justifie encore l’importance et la robustesse de cette classe. Une
exception notable est l’utilisation d’une pile auxiliaire, qui augmente radicalement le pouvoir expressif
des automates. Les automates unidirectionnels non déterministes avec pile sont appelés automates à pile
et calculent la célèbre classe des langages algébriques. Il est bien connu (voir par exemple [HMU07]) que
le problème d’appartenance d’un langage algébrique aux langages réguliers est indécidable13.

10Cette sous-classe possède également des caractérisations en termes d’automates, de logique et d’algèbre.
11Les automates apériodiques sont aussi appelés automates sans compteur [MP71].
12La traduction littérale de « pebble automata » est en réalité « automate à galets » ou « à cailloux ».
13Ce problème est néanmoins décidable en partant de la sous-classe des langages algébriques déterministes [Ste67].

Jump to contents

17

Transducteurs finis

Cemanuscrit se concentre sur les transducteurs finis, qui sont des automates finis enrichis avec des sorties.
Formellement, un transducteur est une machine à états finis définie en partant d’un modèle d’automate
et en ajoutant une sortie sur chacune de ses transitions. Sur une entrée donnée, la machine renvoie la
concaténation des sorties produites le long des transitions de son exécution : elle calcule donc une fonc-
tion (lorsqu’elle est déterministe) ou une relation (lorsqu’elle est non déterministe) des mots vers les mots.
Les transducteurs sont utilisés dans de nombreux domaines tels que la compilation [FCL10, Chapter 3],
le traitement des langages naturels [MPR08] ou l’arithmétique des ordinateurs. De plus, ils fournissent
un environnement plus complet que les automates finis pour modéliser des programmes simples.

Expressivité des transducteurs. Il est possible de définir une grande variété de modèles de trans-
ducteurs, qui sont unidirectionnels ou bidirectionnels, déterministes ou non, imbriqués ou non, etc. Le
comportement d’un transducteur bidirectionnel déterministe est par exemple illustré dans la Figure 4.

Lecture

Mot d’entrée⊢ ⊣

Mot de sortie
Ecriture

Etats de
contrôle

Figure 4: Fonctionnement d’un transducteur bidirectionnel déterministe.

Contrairement au cas des automates, ces différents modèles de transducteurs n’ont pas la même
expressivité. En conséquence, la théorie des fonctions calculées par les transducteurs tend à être plus
complexe que l’étude des langages calculés par les automates, comme observé par Scott : « les fonctions
calculées par les machines sont plus importantes - ou au moins plus fondamentales - que les langages
que ces dernières calculent » [Sco67, Section 5]. Les phénomènes suivants se produisent :

▶ les transducteurs non déterministes sont plus expressifs que les transducteurs déterministes. Une rai-
son évidente à ce phénomène est que les transducteurs non déterministes calculent des relations,
alors que les transducteurs déterministes ne peuvent calculer que des fonctions. Plus subtilement,
même les transducteurs non déterministes fonctionnels (c’est-à-dire qui calculent uniquement des
fonctions) tendent à être plus expressifs que les transducteurs déterministes ;

▶ les transducteurs bidirectionnels sont plus expressifs que les transducteurs unidirectionnels. Cela
vient du fait que les transducteurs bidirectionnels sont capables de renverser des (morceaux de)
leur entrée, en la lisant de la droite vers la gauche, alors que lesmachines unidirectionnelles (même
non déterministes) sont forcées de la lire de la gauche vers la droite ;

▶ les transducteurs imbriqués sont plus expressifs que les transducteurs non imbriqués. Intuitivement,
l’argument est que les transducteurs imbriqués peuvent imiter les boucles « pour » imbriquées et
donc produire des sorties dont la taille est polynomiale en celle de l’entrée, alors que les transduc-
teurs non imbriqués ne produisent que des sorties de taille linéaire.

Modèles de transducteurs étudiés. Les travaux récents se concentrent notamment sur :

▶ les transducteurs déterministes unidirectionnels, qui calculent la classe des fonctions séquentielles ;
▶ les transducteurs non déterministes unidirectionnels fonctionnels qui calculent les fonctions rationnelles ;
▶ les transducteurs déterministes bidirectionnels qui calculent les fonctions régulières ;

Jump to contents

18 INTRODUCTION EN FRANÇAIS

▶ les transducteurs à jetons (= bidirectionnels imbriqués) qui calculent les fonctions polyrégulières.

Ces classes de fonctions sont représentées en Figure 5, où toutes les inclusions sont strictes.

POLYRÉGULIÈRES
Transducteurs à jetons

RÉGULIÈRES
Transducteurs déterministes

bidirectionnels

SÉQUENTIELLES
Transducteurs déterministes

unidirectionnels

RATIONELLES
Transducteurs non déterministes
unidirectionnels fonctionnels

Figure 5: Classes de fonctions calculées par les transducteurs de mots finis.

Transducteurs bidirectionnels et fonctions régulières. La classe des fonctions régulières est sou-
vent considérée comme l’équivalent le plus naturel14 des langages réguliers. Elle a été étudiée ses nom-
breuses propriétés comme sa clôture par composition de fonctions [CJ77] ou la décidabilité du pro-
blème d’équivalence [Gur80]. Des caractérisations équivalentes de cette classe ont été données en termes
d’expressions (en adaptant les expressions régulières [AFR14, DGK18, BDK18, BR18] ou comme com-
position de fonctions de base [BS20]) ou de logique [EH01, DFL18].

Un modèle substantiellement différent, appelé transducteurs à registres sans copies, capture également
la classe des fonctions régulières [AC10]. De manière informelle, un transducteur à registres est un au-
tomate déterministe unidirectionnel enrichi avec des registres qui stockent des morceaux de la sortie.
Les registres sont mis à jour à chaque transition. Ce modèle est à la fois plus simple (car unidirectionnel)
et plus complexe (car il manipule des registres) qu’un transducteur bidirectionnel. Puisqu’il ne parcourt
qu’une fois son entrée, il constitue un modèle pertinent de programme pour flux de données.

Transducteurs à jetons et fonctionspolyrégulières. Lemodèle appelé transducteur à jetons est obtenu
en imbriquant des transducteurs déterministes bidirectionnels [MSV00, EM02, Boj18]. Un transducteur
à 1 jeton est simplement un transducteur bidirectionnel. Un transducteur à 2 jetons est constitué d’un
transducteur bidirectionnel qui, lorsqu’il se trouve dans une position de son d’entrée, peut appeler des
transducteurs bidirectionnels auxiliaires. Ces derniers prennent en entrée lemot d’origine où la position
de l’appel est marquée (nous disons qu’un jeton est déposé à cette position). Le transducteur principal
renvoie finalement la concaténation de toutes les sorties de ses appels auxiliaires. Plus généralement, un
transducteur à k jetons pour k ⩾ 1 est constitué de transducteurs bidirectionnels imbriqués jusqu’à une
profondeur k. Une exécution partielle d’un transducteur à 3 jetons est illustrée en Figure 6.

Un transducteur à k jetons peut aussi être vu comme un programme qui exécute des boucles « pour »
imbriquées, dans lequel le i-ème indice de boucle imbriquée est la position du i-ième jeton. De ce point
de vue, il est facile d’observer qu’un transducteur à k jetons peut produire une sortie dont la taille est
polynomiale en la longueurn de l’entrée, et plus précisément enO(nk) puisqu’il a k boucles imbriquées.

14Cette notion est hautement informelle, et les autres classes sont aussi des équivalents très naturels des langages réguliers.

Jump to contents

19

Mot d’entrée⊢ ⊣

Transducer principal

Mot d’entrée⊢ ⊣

Transducteur auxiliaire
appelé en •

jeton

Mot d’entrée⊢ ⊣

Transducteur auxiliaire
appelé en •

jetonjeton

Figure 6: Exécution d’un transducteur à 3 jetons.

Comme mentionné ci-dessus, la classe des fonctions polyrégulières est définie comme la classe des
fonctions calculées par des transducteurs à jetons. Plusieurs propriétés de cette classe telles que sa clô-
ture par composition de fonctions [EM02] sont connues depuis longtemps. L’étude assez exhaustive de
Bojańczyk [Boj18] a créé un regain intérêt récent pour les fonctions polyrégulières. Plusieurs caractéri-
sations équivalentes ont été données, en termes d’expressions (comme composition de fonctions de base
[Boj18]) ou de logique [BKL19]. D’autres formalismes équivalents ont été introduits, comme un lan-
gage de programmation impératif nommé transducteurs à boucles « pour », un langage de programmation
fonctionnel basé sur le λ-calcul, ou un système de types spécifique [Boj18, Boj23a].

Problèmes d’appartenance pour les transducteurs

La diversité des classes de fonctions calculées par des transducteurs fait apparaître de nombreux pro-
blèmes d’appartenance qui n’existaient pas pour les automates (puisque tous les modèles étaient équiva-
lents). Certains ont été résolus dans la littérature, via des techniques de preuves assez disparates.

La question des modèles canoniques. Comme observé dans le cas des automates, une approche na-
turelle pour résoudre les problèmes d’appartenance à une sous-classe est de décrire une procédure pour
transformer unemachine en un objet canonique, c’est-à-dire qui ne dépend que de la sémantique de lama-
chine et pas de sa syntaxe. Dans le cas des transducteurs, desmodèles canoniques peuvent être construits
pour les fonctions séquentielles et rationnelles [RS91, Cho03, FGL19].

Ces modèles canoniques ont été utilisés avec succès pour décider si une fonction rationnelle est sans
étoile [FGL19] (la notion de sans étoile pour les fonctions rationnelles étant définie comme un analogue
des langages sans étoile). En outre, ils permettent de décider si une fonction rationnelle est en réalité sé-
quentielle. Historiquement, ce résultat a en fait été obtenu dans plusieurs articles sans utiliser demodèles
canoniques [Cho77,WK95, BCPS03]: la preuve classique consiste à montrer que tout transducteur non-
déterministe unidirectionnel (et pas seulement l’objet canonique) qui calcule une fonction séquentielle
vérifie une propriété syntaxique (décidable), souvent appelée propriété de jumelage.

Optimisation des transducteurs bidirectionnels. La construction d’unmodèle canonique n’estmal-
heureusement pas connue en général15 pour les transducteurs bidirectionnels et les fonctions régulières.

15Néanmoins, il est possible de construire un modèle canonique dans le cas des fonctions régulières avec sémantique d’origine (voir
[Boj14]). Des résultats partiels sont également connus dans cas restreints de transducteurs bidirectionnels [LLN+11].

Jump to contents

20 INTRODUCTION EN FRANÇAIS

Par conséquent, il semble difficile de décider des propriétés qui concernent la sémantique de ces fonc-
tions, car elles peuvent être représentées de plusieurs manières (apparemment) sans lien les unes avec
les autres. En particulier, décider si une fonction régulière est sans étoile (là encore, cette notion étant
formellement définie par analogie avec les langages sans étoiles) est un problème ouvert.

Il est néanmoins possible de décider si une fonction régulière est rationnelle [FGRS13, BGMP18].
Les preuves de ce résultat reposent sur une étude assez combinatoire du comportement des transduc-
teurs bidirectionnels. Une fois de plus, ce résultat peut être vu comme une procédure d’optimisation de
programme puisqu’il construit un transducteur unidirectionnel (= plus efficace) dès qu’il en existe un.

Optimisation des transducteurs à jetons. Etant donnée une fonction calculée par un transducteur à
ℓ jetons, une question très naturelle est de savoir si elle peut être calculée par un transducteur à k jetons
pour k ⩽ ℓ fixé. Ce problème s’interprète facilement en termes d’optimisation, puisqu’il s’agit de passer
d’un programme comportant ℓ boucles imbriquées (c’est-à-dire dont le temps d’exécution estO(nℓ) sur
des entrées de taille n) à un programme ne comportant que k boucles imbriquées (donc enO(nk)). De
manière équivalente, il s’agit de savoir si la profondeur d’appel de fonctions peut être minimisée.

Comme expliqué plus haut, un transducteur à k jetons produit un mot dont la taille est en O(nk)
lorsque n est la taille de l’entrée. Nous pourrions donc conjecturer qu’une fonction calculée par un
transducteur à ℓ jetons peut être calculée par un transducteur à k jetons si et seulement si sa sortie est
en O(nk). Ce résultat est vrai pour k = 1 et permet de décider si une fonction est calculable par un
transducteur à 1 seul jeton16 [Boj22]. Cependant, la conjecture est fausse en général : pour tout k ⩾ 3, il
existe une fonction dont la sortie estO(n2)mais qui ne peut pas être calculée par un transducteur ayant
moins de k jetons [Boj22, Boj23b]. Les problèmes d’appartenance associés sont ouverts.

Transducteurs de mots infinis et calculabilité. Des automates traitant les mots infinis (= séquences
infinies de caractères) ont été étudiés dès les origines de la théorie des automates, à la suite des travaux de
Büchi [Büc62]. Ces machines sont essentiellement construites comme les automates de mots finis, à ceci
près que leur exécution est infinie puisqu’elles doivent lire l’intégralité de leur entrée. Elles définissent
un analogue célèbre des langages réguliers pour les mots infinis, appelés langages ω-réguliers (voir par
exemple [PP04] pour une introduction). Il n’aura pas échappé au lecteur que, dans la pratique, les entrées
d’un programme sont rarement infinies. C’est effectivement le cas, néanmoins les mots infinis peuvent
être considérés comme une manière de représenter des flux de données arbitrairement longs.

Plusieurs modèles de transducteurs à entrée et sortie infinies ont été étudiés dans la littérature. Les
plus célèbres d’entre eux sont définis par analogie avec les transducteurs de mots finis:

▶ les transducteurs déterministes unidirectionnels, qui calculent les fonctions séquentielles de mots infinis;
▶ les transducteurs non-déterministes unidirectionnels, pour les fonctions rationnelles de mots infinis;
▶ les transducteurs déterministes bidirectionnels enrichis avec une fonctionnalité supplémentaire ap-

peléeω-anticipation, qui calculent les fonctions régulières de mots infinis [AFT12]. Demanière infor-
melle, une ω-anticipation permet à la machine de vérifier une propriété « infinie » de son entrée,
comme par exemple : « est-ce que le caractère 0 apparaît un nombre infini de fois ? ».

Ces classes de fonctions sont robustes et possèdent de nombreuses caractérisations équivalentes et pro-
priétés algorithmiques. En outre, il est possible de décider si une fonction rationnelle de mots infinis est
séquentielle [BC04] . Les trois classes mentionnées ci-dessus sont représentées en Figure 7.

Bien que robustes, les fonctions rationnelles et régulières de mots infinis souffrent d’une différence
majeure avec le cas des mots finis. Le lecteur devrait être convaincu que toutes les transductions demots
finis mentionnées ci-dessus sont calculables, au sens où elles peuvent être écrites dans n’importe quel

16Comme les transducteurs à 1 jeton sont les transducteurs bidirectionnels, il décide si une fonction polyrégulière est régulière.

Jump to contents

21

RÉGULIÈRES
Transducteurs déterministes bidirectionnels

avecω-anticipations

SÉQUENTIELLES
Transducteurs déterministes

unidirectionnels

RATIONNELLES
Transducteurs non déterministes
unidirectionnels fonctionnels

CALCULABLES
Machines de Turing

déterministes

Figure 7: Classes de fonctions calculées sur les mots infinis.

langage de programmation ou, de manière équivalente, calculées par unemachine de Turing déterministe.
Ce n’est plus le cas ici : l’utilisation d’ω-anticipations ou de non-déterminisme dans les exécutions infi-
nies permet de détecter, par exemple, si l’entrée contient un nombre infini de fois un caractère donné.
Malheureusement, une telle propriété ne peut être vérifiée par un programme déterministe.

Un problème essentiel pour la pratique est donc de savoir si une fonction régulière demots infinis est
calculable ou non. Cette question a été récemment résolue et une procédure a été fournie pour construire
un programme (machine de Turing déterministe) équivalent lorsqu’il en existe un [DFKL20]. En outre,
les fonctions régulières demots infinis qui sont calculables sont sémantiquement caractérisées17 comme
les fonctions régulières qui sont continues pour une certaine topologie.

Contributions de ce manuscrit

Ce manuscrit explore la plupart des résultats des sept articles publiés par l’auteur au cours de sa thèse
[DFG20,Dou21,Dou22, CD22,Dou23, CDL23, CDFW23]. Plusieurs améliorations et clarifications sont
proposées par rapport aux énoncés originaux. En outre, les résultats sont présentés dans un formalisme
unifié. Plus concrètement, les contributions de ce manuscrit sont doubles :

▶ nous résolvons plusieurs problèmes d’appartenance entre des classes de transductions, à la fois sur
lesmots finis et infinis. Toutes les questions étudiées dans cemanuscrit portent sur desmodèles de
transducteurs qui existent déjà dans la littérature18 et leurs solutions sont non triviales. A chaque
fois, la procédure d’appartenance s’avère effective (dans le sens où elle construit un transducteur
« plus simple » lorsqu’il en existe un) et elle peut donc être considérée comme une procédure
d’optimisation de programmes. Ces résultats sont résumés dans la Table 9 ;

▶ nous fournissons de nouveauxmodèles de calcul et de nouvelles caractérisations pour décrire plusieurs
classes de transductions déjà connues. Ces résultats offrent une nouvelle compréhension de leurs
pouvoirs expressifs et de leurs limites. En outre, le fait de disposer de plusieurs représentations
d’un même objet s’avère très utile pour résoudre les problèmes d’appartenance associés.

Résolution des problèmes d’appartenance. Au-delà des résultats en eux-mêmes, l’auteur estime que
les techniques de preuve développées dans ce manuscrit pour résoudre les problèmes d’appartenance
sont également précieuses. En effet, nous suivons une stratégie systématique pour résoudre le problème

17Formellement, ces résultats ne sont vrais que si l’on considère les fonctions « à extension près ». Mais nous oublions délibé-
rément cette précision dans une approche introductive informelle.

18Autrement dit, nous n’introduisons pas artificiellement de nouveaux modèles afin de résoudre des problèmes d’appartenance
créés de toutes pièces par nos propres définitions.

Jump to contents

22 INTRODUCTION EN FRANÇAIS

d’appartenance d’une classe P de transducteurs vers une sous-classe P′. Celle-ci consiste à chercher des
caractérisations sémantiques et syntaxiques de la sous-classe, comme décrit dans le Méta-théorème 8.

Méta-théorème 8 (Problème d’appartenance P→ P′)

Soit f une fonction calculée par un transducteur T de la classe P. Sont équivalents:

(1) f peut être calculée par un transducteur de la sous-classe P′ ;
(2) f vérifie une certaine propriété sémantique (F) ;
(3) T vérifie une certaine propriété syntaxique (T).

En outre, (T) est décidable et la construction Item (3)⇒ Item (1) est effective.

Meta-preuve duMéta-théorème 8. Item (1)⇒ Item (2) est en général assez facile. Pour Item (2)
⇒ Item (3), nous utilisons des arguments combinatoires de « pompage ». Item (3)⇒ Item (1) consti-
tue la procédure d’optimisation proprement dite : c’est la partie la plus difficile de la preuve. ◀

Formellement, la décidabilité du problème d’appartenance de P à P’ découle du fait que la propriété
(T) est décidable. La propriété sémantique (F) est non seulement un outil dans la preuve, mais elle est
aussi utile pour montrer à la main qu’une fonction f donnée est calculable ou non par un transducteur
de P′. Les différentes propriétés utilisées dans ce manuscrit sont résumées dans la Table 9.

Remarquons que le Méta-théorème 8 ne traite pas d’un objet canonique associé à la fonction f : la
propriété (T) s’applique à tout transducteur de P. De cette façon, nous contournons les difficultés liées
à la construction de modèles canoniques, au prix de preuves quelque peu combinatoires. Nous nous
appuierons néanmoins sur un objet canonique pour montrer l’avant-dernière ligne de la Table 9.

Problème d’appartenance
Propriété

sémantique
Propriété
syntaxique Résultat

Transducteur aveugle à ℓ jetons
↓

Transducteur aveugle à k jetons

Sortie de
tailleO(nk)

Transducteur
pompable

(Definition 3.17)
Theorem 3.12

Transducteur myope à ℓ jetons
↓

Transducteur myope à k jetons

Sortie de
tailleO(nk)

Transducteur
pompable

(Definition 3.25)
Theorem 3.13

Transducteur à ℓ billes
↓

Transducteur à k billes

Sortie de
tailleO(nk)

Transducteur
avec haltères
(Lemma 4.47)

Theorem 4.11

Transducteur récursif à billes
↓

Transducteur à k billes

Sortie de
tailleO(nk)

Transducteur
avec cycles lourds
(Lemma 4.47)

Theorem 4.12

Transducteur à ℓ jetons avec
sortie dans Z ouN

↓
Transducteur à k jetons avec

sortie dans Z ouN

Sortie de
tailleO(nk)

Transducteur
pompable

(Definition 5.50)
Theorem 5.25

Jump to contents

23

Transducteur à jetons avec
sortie dans Z ouN

↓
Transducteur aveugle à jetons

avec sortie dans Z ouN

Fonction
répétitive

(Definition6.13)

Transducteur
permutable

(Definition 6.28)
Theorem 6.17

Transducteur à jetons avec
sortie dans Z

↓
Transducteur apériodique à
jetons avec sortie dans Z

Fonction lisse
(Definition7.15)

Transducteur
canonique
apériodique

(Definition 7.50)

Theorem 7.19

Transducteur non déterministe
unidirectionnel de mots infinis

↓
Transducteur déterministe

bidirectionnel de mots infinis

Fonction
continue

(Proposition-
Definition8.41)

Transducteur
avec propriété de

jumelage
(Lemma 10.8)

Theorem 10.1

Table 9: Principaux problèmes d’appartenance à une classe résolus dans ce manuscrit.

Optimisation de variantes des transducteurs à jetons. Concrètement, les premiers résultats de ce
manuscrit concernent des variantes des transducteurs à jetons. Rappelons (cf. section précédente) que
pour 1 ⩽ k ⩽ ℓ, les fonctions calculées par les transducteurs à k jetons ne coïncident malheureusement
pas en général avec les fonctions calculées par les transducteurs à ℓ jetons dont la sortie est de taille
O(nk). En outre, les problèmes d’appartenance afférents sont ouverts.

⊢ ⊣

⊢ ⊣

⊢ ⊣

(a) Transducteur aveugle à 3 jetons.

⊢ ⊣

⊢ ⊣

⊢ ⊣

(b) Transducteur myope à 3 jetons.

⊢ ⊣

⊢ ⊣

⊢ ⊣

(c) Transducteur à 3 billes.

Figure 10: Comportement de variantes des transducteurs à jetons.

Afin d’obtenir des résultats d’optimisation tout en contournant cette difficulté, nous nous concen-
trons sur trois sous-classes des transducteurs à k jetons (existantes dans la littérature), qui sont définies
en affaiblissant la manière dont les machines sont imbriquées:

▶ les transducteurs aveugles à k jetons de [NNP21]19 qui sont des transducteurs à k jetons dans les-
quels une machine auxiliaire ne voit aucun jeton20. En d’autres termes, ces machines sont des
fonctions imbriquées qui ne fournissent pas la position actuelle comme argument lors d’un appel.
Ce comportement est illustré dans la Figure 10a (à comparer avec la Figure 6) ;

19La terminologie originale de [NNP21] est « transducteurs à k jetons sans comparaisons ».
20C’est pourquoi le transducteur est dit « aveugle ».

Jump to contents

24 INTRODUCTION EN FRANÇAIS

▶ les transducteurs myopes à k jetons de [EHS07]21, qui sont des transducteurs à k jetons dans les-
quels une machine auxiliaire ne peut voir que le jeton déposé par son parent, mais pas l’historique
complet des jetons précédents22 Ce comportement est illustré dans la Figure 10b ;

▶ les transducteurs à k billes de [EHV99], qui sont des transducteurs à k jetons dans lesquels l’entrée
d’une machine auxiliaire n’est que le préfixe de l’entrée originale, tronqué à la position de l’appel.
La taille de l’entrée diminue donc à chaque appel imbriqué (cf. Figure 10c). Les transducteurs à k
billes peuvent être vus comme une restriction des transducteurs myopes à k jetons.

Pour tout 1 ⩽ k ⩽ ℓ, nousmontrons qu’une fonction calculée par un transducteur aveugle à ℓ jetons
(resp. par un transducteur myope à ℓ jetons, resp. par un transducteur à ℓ billes) peut être calculée par un
transducteur aveugle à k jetons (resp. par un transducteur myope à k jetons, resp. par un transducteur
à k billes) si et seulement si sa sortie est de taille O(nk). Les problèmes d’appartenance afférents sont
décidables et les constructions sont effectives, ce qui fournit des procédures d’optimisation. De manière
assez surprenante, le lien entre la profondeur d’imbrication k et la taille de la sortie n’est plus vrai dès
lors que l’on considère des modèles plus puissants que les transducteurs myopes.

Les transducteurs à k billes ont été étendus pour définir le modèle des transducteurs récursifs à billes,
dans lesquels les appels entremachines peuvent être récursifs (la profondeur d’imbrication n’est donc plus
bornée par k). Ces objets récursifs peuvent produire des sorties dont la taille est exponentielle en celle de
l’entrée. Nous montrons qu’une fonction calculée par un transducteur récursif à billes peut être calculée
par un transducteur à k billes pour un certain k ⩾ 1 si et seulement si sa sortie est de taille O(nk).
Le problème d’appartenance est décidable et la construction est effective, ce qui donne un autre résultat
d’optimisation : cette procédure supprime la récursivité chaque fois que c’est possible. Les différentes
classes de fonctions calculées par ces modèles sont comparées en Figure 11.

POLYRÉGULIÈRES
Transducteurs à jetons

RÉGULIÈRES
Transducteurs bidirectionnels

Transducteurs aveugles à jetons
Transducteu

rs
récursifs à b

illesTransducteurs
à billes

Transducteurs myopes à jetons

Figure 11: Classes de fonctions calculées par des variantes des transducteurs à jetons.

Dans le cas des transducteurs aveugles à jetons et des transducteurs myopes à jetons, les techniques
de preuve pour résoudre les problèmes d’appartenances sont très proches. Elles s’appuient sur des struc-
tures algébriques appelées forêts de factorisation [Sim90], qui constituent un outil permettant de décompo-
ser le comportement d’un transducteur bidirectionnel en un nombre fini de briques élémentaires. Pour
les transducteurs (récursifs ou non) à billes, les techniques de preuve sont assez différentes et reposent
sur la correspondance avec les transducteurs à registres (cf. paragraphe suivant).

Transducteurs à billes et transducteurs à registres. Nous avons vu dans la partie précédente que la
classe des fonctions calculées par les transducteurs bidirectionnels (fonctions régulières) est également

21La terminologie originale de [EHS07] est « transducteurs à k jetons invisibles ». En anglais, nous utilisons le terme « last » au
lieu de « myope », pour signifier que le transducteur peut uniquement voir le dernier jeton posé.

22C’est pour cette raison que le transducteur est « myope » : il ne voit que le jeton le plus récent (≃ il ne voit pas « loin »).

Jump to contents

25

calculée par les transducteurs à registres sans copies, qui sont des machines unidirectionnelles à registres.
Dans ce cadre, le terme « sans copie » signifie essentiellement que la valeur d’un registre (qui est un
morceau de la sortie finale) ne peut pas être dupliquée au cours d’une exécution.

Lorsque la condition « sans copie » est supprimée, le modèle de transducteurs à registres peut cal-
culer des sorties dont la taille est exponentielle en celle de l’entrée. Nous montrons que ce modèle est
équivalent aux transducteurs récursifs à billes mentionnés ci-dessus. En outre, pour tout k ⩾ 1, nous
définissons des conditions sur les copies (moins restrictives que « sans copie ») qui rendent ce modèle
équivalent aux transducteurs à k billes. Ces résultats créent une nouvelle intuition des transducteurs à
billes, en montrant que leur comportement est lié aux programmes pour flux de données.

Transducteurs à jetons avec sortie commutative. Nous nous concentrons ensuite sur les transduc-
teurs à jetons dont la sortie est dansZ ou dansN (formellement, le transducteur produit une suite denombres
lors de son exécution, et il renvoie finalement leur somme). Ces machines peuvent être considérées
comme des boucles imbriquées qui calculent un nombre. Dans ce contexte, une intuition clef est que
l’ordre dans lequel la sortie est produite n’a pas d’importance, en raison de la commutativité. Nousmon-
trons tout d’abord que la classe des fonctions calculées par des transducteurs à jetons avec sortie dans Z
(resp. N) coïncide avec la classe des fonctions calculées par des transducteurs à billes ou par les trans-
ducteurs myopes à jetons avec sortie dans Z (resp. N), ce qui n’était pas le cas en Figure 11. En outre,
ces fonctions décrivent une sous-classe naturelle d’une classe célèbre appelée sériesZ-rationnelles23 (resp.
séries N-rationnelles), et le problème d’appartenance associé est décidable.

Nous montrons également que les transducteurs à jetons avec sortie dans Z ouN peuvent être opti-
misés. Dans ce cadre, nous considérons que la « taille » d’un nombre est sa valeur absolue et nous mon-
trons qu’une fonction peut être calculée par un transducteur à k jetons si et seulement si sa sortie est
enO(nk). Ce résultat a déjà été obtenu par Schützenberger [Sch62], mais notre preuve est différente et
s’appuie sur les forêts de factorisation. Le cas de Z est un peu délicat car la présence d’entiers négatifs
permet de « supprimer » des parties de la sortie (ce qui n’était pas possible avec les mots).

Transducteurs aveugles avec sortie commutative. Nous observons ensuite que les transducteurs
aveugles à jetons (toujours avec sorties dans Z ou N) sont strictement moins expressifs que les trans-
ducteurs à jetons. Nous étudions et résolvons alors le problème d’appartenance associé. En termes
d’optimisations de programmes, ce résultat permet de simplifier un programme avec des boucles « pour »
en faisant en sorte que les indices de ses boucles imbriquées fonctionnent de manière indépendante.
Pour la première fois dans ce manuscrit, il n’est plus possible d’utiliser la taille de la sortie comme pro-
priété sémantique pour séparer les classes, puisque qu’elles peuvent toutes deux avoir des sorties de taille
polynomiale. Nous introduisons donc une nouvelle propriété appelée répétitivité et montrons qu’elle ca-
ractérise les fonctions calculables par des transducteurs aveugles parmi les fonctions calculées par des
transducteurs à jetons avec sortie dans Z ou N. Une fois encore, la preuve s’appuie sur les forêts de
factorisation.

Modèles canoniques pour les transducteurs à jetons avec sortie dansZ. Étant donné un transduc-
teur à jetons avec sortie dans24 Z, nous décrivons une procédure effective qui permet de construire un
objet canonique associé à la fonction qu’il calcule. Cet objet canonique peut être vu comme une forme
particulière de transducteur à billes. Nous l’appelons le transducteur résiduel de la fonction, et son com-
portement s’inspire fortement de celui de l’automate minimal d’un langage régulier.

23Demanière générale, les sériesS-rationnelles sont des fonctions desmots vers un semi-anneauSqui sont calculées par unmodèle
de transducteurs appelé S-automates pondérés (voir [Sak09]). Ici, nous utilisons uniquement S := (Z,+,×) ou (N,+,×).

24L’auteur n’a pas connaissance d’un moyen d’adapter la construction aux sorties dansN uniquement.

Jump to contents

26 INTRODUCTION EN FRANÇAIS

Pour les langages réguliers (resp. pour les fonctions rationnelles), la construction d’un modèle ca-
nonique a été utilisée avec succès pour décider si un langage (resp. une fonction) est sans étoile. Nous
transférons la notion d’absence d’étoile aux fonctions calculées par les transducteurs à jetons avec sor-
tie dans Z ou N, et fournissons de nombreuses caractérisations des sous-classes de fonctions associées.
Enfin, nous montrons comment décider si une fonction calculée par un transducteur à jetons avec une
sortie en Z est sans étoile. La preuve repose sur une condition sémantique de lissité, qui se traduit sous
forme d’une propriété syntaxique (décidable) du transducteur résiduel que nous appelons apériodicité
(adaptée de la notion d’apériodicité mentionnée plus haut pour les automates).

Fonctions régulières déterministes demots infinis. Les autres résultats de cemanuscrit concernent
les transducteurs de mots infinis. Les questions étant plus complexes dans ce cadre, nous ne traitons pas
de machines imbriquées et nous nous concentrons sur les transducteurs bidirectionnels de mots infinis.

Nous définissions la classe des fonctions régulières déterministes de mots infinis comme la classe des
fonctions calculées par des transducteurs déterministes bidirectionnels de mots infinis. Demanière sur-
prenante, cette classe n’a pas été étudiée dans la littérature, contrairement aux fonctions régulières de mots
infinis qui sont obtenues en ajoutant des ω-anticipations aux transducteurs bidirectionnels. Même si les
fonctions régulières déterministes sont plus faibles que les fonctions régulières (cf. Figure 12), elles sont
plus pertinentes en pratique puisque toute fonction régulière déterministe s’avère calculable.

RÉGULIÈRES
Transducteurs déterministes bidirectionnels

avecω-anticipations

SÉQUENTIELLES
Transducteurs déterministes

unidirectionnels

RATIONNELLES
Transducteurs non déterministes
unidirectionnels fonctionnels

RÉGULIÈRES DÉTERMINISTES
Transducteurs déterministes bidirectionnels

Figure 12: Classes de fonctions de mots infinis.

Nous étudions les principales propriétés des fonctions régulières déterministes et montrons qu’elles
forment une classe robuste et naturelle de fonctions de mots infinis, close notamment par composition
de fonctions. En outre, nous introduisons deux modèles alternatifs qui capturent cette classe :

▶ les transducteurs à registres (sans copie) de mots infinis (définis en adaptant les transducteurs à re-
gistres de mots finis). Ils peuvent être vus comme des programmes pour flux de données;

▶ les transducteurs déterministes bidirectionnels avec une version affaiblie des ω-anticipations appelées
anticipations finies. Ce modèle est principalement utilisé comme un outil dans les preuves.

Une caractérisation en termes de compositions de fonctions de base est également présentée25. Des ré-
sultats similaires sont déjà connus pour les fonctions régulières de mots finis ou infinis, mais les preuves
dans le cas des fonctions régulières déterministes doivent surmonter des difficultés supplémentaires.

25Une description en termes de logique est aussi obtenue dans [CDFW23] mais nous ne la présentons pas dans ce manuscrit.

Jump to contents

27

Déterminisation des fonctions rationnelles de mots infinis. Depuis [DFKL20], il est conjecturé
que la classe des fonctions régulières déterministes est exactement26 la classe des fonctions régulières
qui sont calculables/continues. Nous apportons une réponse partielle à cette conjecture en montrant que
toute fonction rationnelle de mots infinis qui est calculable/continue est en fait régulière déterministe.
L’auteur considère ce résultat difficile comme l’un des joyaux de ce manuscrit. Puisque la continuité est
décidable, nous savons donc décider le problèmed’appartenance des fonctions rationnelles aux fonctions
déterministes régulières. En pratique, ce résultat permet donc de construire un programme déterministe
à mémoire bornée qui calcule une fonction rationnelle, dès qu’il en existe un.

Plan chapitre par chapitre

Dans le Chapitre 1, nous rappelons les définitions et les propriétés principales de plusieurs modèles de
transducteurs de mots finis. Le Chapitre 2 fournit une boîte à outils pour l’étude des transducteurs bidi-
rectionnels, qui est utilisée dans les Chapitres 3, 5 et 6. Dans le Chapitre 3, nous décrivons les variantes
des transducteurs à jetons appelées transducteurs aveugles à jetons et transducteurs myopes à jetons, et nous
montrons comment les optimiser. Dans le Chapitre 4, nous présentons les transducteurs à billes, nous les
mettons en relation avec les transducteurs à registres et nous montrons comment les optimiser.

Le Chapitre 5 s’intéresse aux transducteurs à jetons dont la sortie est dansZ ouN et montre comment ils
peuvent être optimisés. De plus, il relie les fonctions calculées par ces machines aux célèbres classes de
sériesZ- etN-rationnelles. Dans le Chapitre 6, nous décidons si une fonction calculée par un transducteur
à jetons avec sortie dans Z ou N peut être calculée par un transducteur aveugle. Le Chapitre 7 décrit
comment transformer un transducteur à jetons avec sortie dans Z en un objet canonique. Ce résultat est
utilisé pour décider si une fonction calculée par ce modèle est sans étoile.

Dans le Chapitre 8, nous rappelons les définitions et les propriétés principales de plusieurs modèles
de transducteurs de mots infinis. Le Chapitre 9 étudie les propriétés des fonctions régulières déterministes
de mots infinis, et fournit de nombreuses caractérisations de cette classe. Dans le Chapitre 10, nous mon-
trons qu’une fonction rationnelle de mots infinis est régulière déterministe si et seulement si elle est continue,
ce qui permet de résoudre un dernier problème d’appartenance.

26Ici encore, une formulation formelle de cette conjecture devrait parler d’extensions de fonctions.

Jump to contents

28 INTRODUCTION EN FRANÇAIS

Jump to contents

Introduction

C’est que j’avais besoin de vous pour un mystère
Que je veux pénétrer.

Camille Saint-Saëns, L. Détroyat, A. Silvestre, Henri VIII

Program optimization and class membership problems

Program optimization consists in modifying the syntax (implementation) of a program in order to make it
more efficient with respect to some metrics, while preserving its semantics (behavior). In practice, being
“more efficient” oftenmeans that themodified program uses fewer ressources, e.g. in terms of execution
time or memory. For instance, a sorting algorithm whose asymptotic time complexity is O(n log(n))
over inputs of size n can be seen as an optimization of aO(n2) sorting algorithm1.

Optimization in practice. Making programs as efficient as possible is essential in practice. On the
one hand, optimizing the asymptotic time ormemory consumption is necessary to make programs scale
over large inputs. An extreme case of large inputs comes along with streaming programs, which have to
treat an unbounded sequence of items by doing a single pass in a nearly real-time fashion2. On the other
hand, one can look for programs which are efficient over small inputs3, in which case optimizing the
exact resources consumption is more relevant than studying their asymptotic behavior.

Optimization can be performed at several levels of abstraction, from the algorithmic point of view
(designing algorithms and data structures whose resources consumption is optimal) to the machine code
level (e.g. optimizing the assembly code to make it as efficient as possible with respect to a given com-
puter architecture). However, this process tends to complexify the code, and thus makes it harder to
maintain or debug. It is therefore relevant to perform optimization at the end of the development stage,
as emphasized long ago by Knuth: “premature optimization is the root of all evil” [Knu74]. In addition
to these difficulties, handmade program optimization may be a long (since it requires to think) and risky
(since it may introduce bugs if the semantics is not exactly preserved) task for the programmer.

Automated program optimization. The previous paragraph advocates for doing automated program
optimization. This task consists in designing a meta-program which takes a program as input and auto-
matically produces an optimized program having the same semantics. It can therefore be seen as a par-
ticular form of automated program synthesis4, where the input specification is already a program.

1This is for instance the case of merge sort with respect to insertion sort.
2Informally, the program is only allowed to use limited processing time and memory per item.
3A simple way to optimize the time complexity of a program over small inputs is to pre-compute and hardcode the output of

any input whose size is smaller than a given bound. However, this construction heavily increases the size of the program itself.
4Program synthesis consists in constructing a program which satisfies a given formal specification.

30 INTRODUCTION

Numerous automated optimizations (in particular those for low-level code) have been implemented
for long in compilers and processors5. However, these optimizations generally do not produce an optimal
code (in the sense that no “better” code would exist): they rather follow heuristicmethods for improving
resource usage in some known cases, which already provides impressive results in practice [Leu00].

The practical purpose of this manuscript is describe optimization procedures overs classes of simple
programs, which ensure that the program produced is always optimal6. Obtaining such results pre-
supposes that a metrics has been chosen to compare the efficiency of programs and therefore define
what “optimal” means. Furthermore, considering only “simple” programs is unavoidable since classical
undecidability statements make it hopeless to perfectly optimize programs in general.

Fromprogram optimization to classmembership problems. From a fundamental perspective, the
goal of this manuscript is to study class membership problems. Let us consider a class P of programs (e.g.
programs whose execution time is polynomial in the input size n) and a subclass P′ ⊆ P of target pro-
grams which are considered as “efficient” (e.g. programs whose execution time isO(n)). In this setting,
the class membership problem from P to P′ is formally defined as follows:

▶ Input: a program π ∈ P whose semantics is a function f ;
▶ Question: is there a program π′ ∈ P′ whose semantics is f ?

In other words, this problem asks whether a function from the “big” class C of Figure 1 belongs to the
“small” class C′. Observe that it only deals with semantics of programs and not with their syntax.

Class of functions C
computed by the class of programs P

Class of functions C′
computed by the class of programs P’

Figure 1: Global picture of a class membership problem form P to P’.

Solving7 the class membership problem means building an algorithm which automatically answers
the questionwhen given a program π ∈ P as input. Such an algorithm can nearly be seen as an optim-
ization procedure, with the difference that it only says if an optimized program of π′ ∈ P′ exists, but it
is not required to explicitly build it. However, for all the class membership problems which are solved
in this manuscript, the proof turns out to be effective and enables to build an optimized program.

Finite automata

When dealing with “simple” programs, we shall in fact consider finite-state machines. Formally, such a
machine is a model of computation which has a finite number of internal states. At any given time of its
computation, it is in exactly one state, and it performs a transition from one state to another in response
to some input. In other words, it is an abstract description for a program whose working memory has
bounded size, i.e. which does not depend on the size of the input. Finite state-machines are implemented

5Such optimizations are susceptible to modify the way the processor manipulates its memory, and therefore to put unexpec-
ted information at unexpected places. Unsurprisingly, this feature creates security flaws which can be exploited to get access to
unauthorized information, such as the recent CVE-2022-40982 “downfall” vulnerability on Intel processors.

6In this case, optimization is sometimes called superoptimization [Mas87], but we shall not follow this terminology.
7Formally, one should say “showing that the class membership problem is decidable”.

Jump to contents

31

inmanydeviceswhich performapre-determined sequence of actions depending on a sequence of events,
such as vending machines or programmable logic controllers in industry.

Finite automata and regular languages. Finite deterministic automata are a particular class of finite-
state machines whose input consists of a word (which is a sequence of characters from a finite set) and
whose output is either “yes” or “no”. The inputword is processed by the automaton in a streaming fashion
(as depicted in Figure 2) and it performs a transition each time it reads a new character. This model
has been used for a large variety of applications in computer science (including streaming algorithms,
text algorithms, formal verification via model checking, control theory, network protocols, design of
hardware systems, etc.) and in related areas such as formal linguistics or computational biology.

Read

Input wordFinite set of
control states

Figure 2: Behavior of a finite one-way deterministic automaton.

The set of input words for which the automaton answers “yes” is called the language computed by
the automaton. The class of languages computed by finite automata is well-known under the name of
regular languages, which are considered as one of the cornerstones of theoretical computer science. They
enjoy several other descriptions in terms of expressions (regular expressions [Kle56]), logics (monadic
second-order logic [Büc60, Elg61, Tra62]) or algebra (monoids and congruences [Ner58]).

Minimal automaton. When considering optimization problems for finite automata, a first natural
challenge is to optimize the memory used by the machine. More explicitly, given an automaton, we
intend to build another automaton with minimal number of states which computes the same language.
This problem has been solved for long with e.g. Moore [Moo56] or Hopcroft [Hop71] algorithms.

It turns out that given a regular language, there exists a unique deterministic automaton with min-
imal number of states which computes it. This object is called the minimal automaton of the language.
Therefore the aforementioned minimization algorithms not only reduce the number of states, but they
also build a canonical model associated to a given regular language (in the sense that it only depends on
the language, but not on the automaton that was given as input). Generally speaking, the construction
of canonical models is especially relevant for solving class membership problems, since such objects of-
ten reveal informations about the semantics. Furthermore, it provides a procedure for deciding if two
machines have the same semantics (by canonizing both of them and comparing the results).

Subclass membership problems for regular languages. Another prominent question in automata
theory is to understand the subclasses of regular languages defined by restricting certain of their equi-
valent definitions (automata, expressions, logic or algebra). Naturally, “understanding a class” is a purely
informal goal, but one standard way to do so is to solve the appropriate class membership problems.
Indeed, the techniques developed in this setting generally provide deep insights on the subclasses.

This approach was initiated by Schützenberger [Sch65], who provided a membership procedure for
the class of star-free languages (a subclass of regular languages described by8 star-free expressions, which

8This subclass also enjoys characterizations in terms of automata, logics and algebra.

Jump to contents

32 INTRODUCTION

correspond to a restriction of regular expressions). It turns out that a regular language is star-free if and
only if its minimal automaton enjoys a syntactic property called aperiodicity9. An effective membership
procedure follows since this property can be decided. In subsequent literature, the strategy of solv-
ing membership problems by looking at decidable syntactic properties of the minimal automaton has
provided membership procedures for numerous other subclasses [Str94]. This line of research is still
active nowadays since several subclass membership problems remain open (see e.g. [Pin17]).

Beyond finite automata. In a general fashion, adding simple features to finite deterministic automata
does not increase their expressive power. Let us highlight the following equivalent extensions:

▶ non-deterministic automata, which are able to make “guesses” along a computation, and later check
their validity. Transforming such an automaton into a deterministic one is classical exercice;

▶ two-way (deterministic or non-deterministic) automata, which can perform right and left moves
on their input, while themodelmentioned so far (that we shall fromnowon call one-way automata)
is only able to move right (compare Figures 3a and 3b). Equivalence follows from [She59];

Input word

(a) Computation of a one-way automaton.

Input word⊢ ⊣

(b) Computation of a two-way automaton.

Figure 3: Behavior of one-way and two-way automata.

▶ nested (one-way or two-way) (deterministic or non-deterministic) automata, which are able to call
auxiliary automata during their computation. In this manuscript, we shall mention in more detail
the particular nested model of pebble automata which was introduced in [EH99].

Otherwise stated, all reasonable variants of finite automata can compute nomore regular languages,
which hints oncemore that this class is especially robust and fundamental. A notable exception is the use
of a stack as an auxiliary feature, which radically increases the expressive power of finite automata. One-
way non-deterministic automata with stack are called pushdown automata and compute the celebrated
class of context-free languages. However, it is a classical exercice (see e.g. [HMU07]) to show that the class
membership problem from context-free languages to regular languages is undecidable10.

Finite transducers

This manuscript focuses of finite transducers, which are finite automata enhanced with outputs. More
formally, such a finite-state machine is defined by starting from a finite automaton model and adding
outputs on the transitions. The machine finally returns the concatenation of the outputs produced
along its transitions, therefore it computes a function (when deterministic) or a relation (when non-
deterministic) fromwords to words. Transducers are very useful in a lot of areas like compiling [FCL10,
Chapter 3], natural language processing [MPR08] or computer arithmetic. Furthermore, they provide a
more comprehensive environnement than finite automata for modeling streaming programs.

Expressive power of transducers. By starting from the according models of finite automata, it is
possible to define a variety of transducer models which are either one-way or two-way, deterministic or
not, nested or not, etc. The behavior of a two-way deterministic transducer is e.g. depicted in Figure 4.

9The latter is also called counter-freeness in the literature [MP71].
10The problem is however decidable when starting from the subclass of deterministic context-free languages [Ste67].

Jump to contents

33

Read

Input word⊢ ⊣

Output word

Write

Finite set of
control states

Figure 4: Behavior of a two-way deterministic transducer.

Contrary to the case of automata, these various transducer models do not have in general the same
expressive power. As a consequence, the theory of functions computed by transducers tends to be more
challenging than the study of languages computed by automata, following an early remark of Scott: “the
functions computed by the various machines are more important - or at least more basic - than the sets
accepted by these devices” [Sco67, Section 5]. Informally, the following striking phenomena occur:

▶ non-deterministic transducers are more expressive than deterministic transducers. A trivial reason for
this phenomenon is that non-deterministic transducers compute relations whereas deterministic
transducers can only compute functions. More interestingly, even functional (i.e. which compute
functions) non-deterministic transducers tend to be more expressive than the deterministic ones;

▶ two-way transducers are more expressive than one-way transducers. This comes from the fact that
two-way transducers are able to return reversed (portions of) their input, by reading it from right
to left, while (even non-deterministic) one-way machines are forced to read it from left to right;

▶ nested transducers are more expressive than non-nested transducers. Intuitively, the argument is
that nested transducers can mimic nested “for” loops and therefore produce outputs whose size is
polynomial in the input size, while non-nested transducers only produce outputs of linear size.

Celebrated transducer models. Recent literature focuses on the following prominent models:
▶ one-way deterministic transducers, which compute the class of sequential functions;
▶ functional one-way non-deterministic transducers, which compute the class of rational functions;
▶ two-way deterministic transducers, which compute the class of regular functions;
▶ pebble transducers (= nested two-way transducers) which compute the class of polyregular functions.

These various classes of functions are depicted in Figure 5, where all inclusions are (implicitly) strict.

POLYREGULAR
Pebble transducers

REGULAR
Two-way deterministic transducers

SEQUENTIAL
One-way deterministic

transducers

RATIONAL
Functional one-way

non-deterministic transducers

Figure 5: Classes of functions computed by transducers of finite words.

Jump to contents

34 INTRODUCTION

Two-way transducers and regular functions. The specific class of regular functions has been con-
sidered for long as the most natural counterpart11 of regular languages. It has been studied for its
properties such as closure under function composition [CJ77] or decidability of the equivalence prob-
lem [Gur80]. Equivalent descriptions have been given in terms of expressions (regular-like expressions
[AFR14, DGK18, BDK18, BR18] or composition of basic functions [BS20]) or logics [EH01, DFL18].

A substantially different model called copyless streaming string transducerswas also shown to compute
exactly the class of regular functions [AC10]. Such a machine consists of a one-way deterministic auto-
maton enriched with registers which store portions of the output and are updated at each transition.
This model is at the same time simpler (it reads the input only once) and more complex (it uses registers)
than a two-way transducer. It is especially relevant as a model of streaming programs.

Pebble transducers andpolyregular functions. The transducermodel called pebble transducer is built
by nesting two-way deterministic transducers [MSV00, EM02, Boj18]. Informally, a 1-pebble transducer is
simply a two-way transducer. A 2-pebble transducer consists of a two-way transducerwhich, when on any
position of its input word, can call auxiliary two-way transducers. The latter take as input the original
input word inwhich the position of the call is marked (we say that a pebble is dropped in this position). The
main transducer finally returns the concatenation of all the outputs returned by its auxiliary calls. More
generally, a k-pebble transducer for k ⩾ 1 consists of nested two-way transducers with nesting depth k.
A partial computation of a 3-pebble transducer is depicted in Figure 6.

Input word⊢ ⊣

Main transducer

Input word⊢ ⊣
Auxiliary transducer

called in •

pebble

Input word⊢ ⊣

Auxiliary transducer
called in •

pebblepebble

Figure 6: Computation of a 3-pebble transducer.

A k-pebble transducer can also be seen as a programwhich executes nested (two-way) “for loops”. In
this setting, the position of the i-th pebble for 1 ⩽ i ⩽ k corresponds to the index of a i-th nested loop.
From this perspective, it is easy to see that a k-pebble transducer can produce an output whose size is
polynomial in the input length n, more precisely inO(nk) since it has k nested loops.

Asmentioned above, the class of polyregular functions is defined as the class of functions computed by
pebble transducers. Several properties such as closure under function composition [EM02] are known
for long. A recent regain of interest for polyregular functions has followed from Bojańczyk’s extens-
ive study [Boj18]. Several equivalent descriptions of this class have been given, in terms of expressions
(with composition of basic functions [Boj18]) and logics [BKL19]. Other equivalent formalisms have
been introduced, among them an imperative programming language named for transducers, a functional
programming language in the spirit of λ-calculus, and a specific type system [Boj18, Boj23a].

11This notion is highly informal, and the other classes are also very natural counterparts of regular languages.

Jump to contents

35

Class membership problems for finite transducers

The various classes of functions computed by finite transducers specify various membership problems
which do not exist in the case of finite automata (since all automata models are equivalent). Solutions to
certain of these problems are available in the literature, with very disparate proof techniques.

The quest for canonical models. As mentioned for finite automata, a very natural approach for solv-
ing class membership problems is to describe a procedure for transforming anymachine into a canonical
one, i.e. which only depends on the semantics of the machine. In the case of transducers, it is known
how to build canonical objects for sequential and rational functions [RS91, Cho03, FGL19].

These canonical models have successfully been used to decide whether a rational function is star-free
rational [FGL19] (star-freeness being defined here as an analogue of the eponymous notion for regular
languages). Furthermore, they provide a way to decide the class membership problem from rational
functions to sequential functions. Historically, this last problem was in fact shown decidable in various
papers without using canonical models [Cho77, WK95, BCPS03]: the classical proof consists in show-
ing that any (and not only a canonical one) one-way non-deterministic transducer which computes a
sequential function verifies a (decidable) syntactic property which is often called twinning property.

Optimization of two-way transducers. When it comes to two-way transducers and regular func-
tions, the construction of a canonical model is unfortunately not known in general12. As a consequence,
deciding intrinsic properties of such functions is believed to be difficult, since they can be described in
several (seemingly) unrelated manners. In particular, deciding star-freeness of regular functions (which is
once again defined by analogy with star-free regular languages) is an open problem.

The classmembership problem from regular functions to rational functions was nevertheless shown
decidable [FGRS13, BGMP18]. The proofs of this result rely on a rather combinatorial study of the
behavior of two-way transducers. Once more, this result can be considered as a program optimization
procedure since it builds a one-way (= more efficient) transducer whenever it exists.

Optimization of pebble transducers. A very natural question is to decide for 1 ⩽ k ⩽ ℓ whether
a function given by an ℓ-pebble transducer can be computed by a k-pebble transducer. This problem
is especially relevant in terms of optimization since it asks whether a program with ℓ nested loops (i.e.
whose execution time is O(nℓ) on inputs of size n) can be transformed into a program with k nested
loops only. Equivalently, it asks whether the nesting depth of nested functions can be minimized.

Asmentioned in the previous section, ak-pebble transducer produces an outputwhose size isO(nk)
when n is the input size. It is therefore natural to conjecture that a function given by an ℓ-pebble trans-
ducer can be computed by a k-pebble transducer if and only if its output is O(nk). This result holds
for k = 1 and it was used to solve the membership problem from ℓ-pebble transducers for any ℓ ⩾ 1
to 1-pebble transducers13 [Boj22]. However, the general conjecture does not hold: for all k ⩾ 3 there
exists a function whose output isO(n2) but which cannot be computed by a transducer having less than
k pebbles [Boj22, Boj23b]. The related class membership problems are open.

Transducers of infinitewords andcomputability. Automata over infinite words (= infinite sequences
of characters) have been studied since the early days of automata theory, following the seminal work of

12It is however known how to build a canonical model in the case of regular functions with origin semantics (see [Boj14]). Partial
results are also known for sweeping transducers (which can only change direction at the borders of the input), see e.g. [LLN+11].

13Since 1-pebble transducers are simply two-way transducers, it decides whether a polyregular function is regular.

Jump to contents

36 INTRODUCTION

Büchi [Büc62]. They are roughly defined as automata over finite words, but perform infinite compu-
tations in order to read their whole input. Such machines compute a celebrated analogue of regular
languages over infinite words, which is called ω-regular languages (see e.g. [PP04] for an introduction).
The readermay argue that inputs are rarely infinite in real life. This is indeed the case, but infinite words
can be understood as an abstraction of arbitrarily long inputs processed by streaming programs.

Various transducer models with infinite input and output have been studied in the literature. The
most celebrated of these are defined by analogy with transducers of finite words:

▶ one-way deterministic transducers, which compute the class of sequential functions of infinite words;
▶ one-way non-deterministic transducers, which compute the class of rational functions of infinite words;
▶ two-way deterministic transducerswith an extra feature calledω-lookarounds, which compute regular

functions of infinite words [AFT12]. Informally, an ω-lookaround enables the machine to check an
“infinite” property of its input, such as “does the character 0 occurs infinitely many times?”.

These robust classes enjoy various characterizations and algorithmic properties. Furthermore, the class
membership problem from rational functions to sequential functions is decidable [BC04]. The three
aforementioned classes are depicted in Figure 7 (where all inclusions are implicitly strict).

REGULAR
Deterministic two-way transducers

withω-lookarounds

SEQUENTIAL
Deterministic one-way

transducers

RATIONAL
Functional non-deterministic

one-way transducers

COMPUTABLE
Deterministic Turing machines

Figure 7: Classes of functions over infinite words.

However, rational and regular functions of infinite words both suffer from a severe downside when
it comes to effective implementations, which is a major difference with the case of finite words. Indeed,
the reader should be convinced that all the aforementioned transductions of finite words are computable,
in the sense that they can be written in any programming language, or equivalently computed by a de-
terministic Turing machine. This is no longer the case here: the use of ω-lookarounds or non-determinism
along infinite computations makes it possible to detect e.g. if the input contains infinitely many times a
given character. Nevertheless, such a property cannot be verified by a deterministic device.

As a consequence, a prominent class membership problem for practical applications is to decide
whether a regular function of infinite words is computable or not. This questionwas recently solved and
a procedure was provided for building an equivalent program (deterministic Turing machine) whenever
it exists [DFKL20]. Interestingly, the regular functions of infinite words which are computable are se-
mantically characterized14 as the regular functions which are continuous for some topology.

14 Formally, all these results are only true up to considering extensions of the function domains, but we deliberately omit this
precision in an informal introductive approach.

Jump to contents

37

Contributions of this manuscript

This manuscript explores most of the results from the seven papers published by the author during his
PhD thesis [DFG20, Dou21, Dou22, CD22, Dou23, CDL23, CDFW23]. Several improvements and cla-
rifications are proposed with respect to the original statements. Furthermore, the results are presented
through a unified formalism. More concretely, the contributions of this manuscript are twofold:

▶ we solve various class membership problems for transductions of finite and infinite words. All the
questions deal with transducer models which already exist in the literature15 and the solutions
given are non-trivial. Each time, the membership procedure turns out to be effective (in the sense
that it builds a “simpler” transducer whenever it exists) and it can therefore be considered as a
program optimization procedure. These results are summarized in Table 9;

▶ weprovidenew computationmodels and characterizations for capturing pre-existing classes of trans-
ductions. These results complete the previous understanding of these classes by providing new
insights on their expressive power. Furthermore, having various representations which highlight
different properties of the same object is helpful for solving class membership problems.

Techniques for solving classmembership problems. Apart from the final results in themselves, the
author believes that the proof techniques developed in this manuscript for deciding membership prob-
lems are also valuable. Indeed, when solving the membership problem from a given class of transducers
P to a subclass P′, we shall follow a generic high-level proof strategy. This strategy consists in looking
for semantic and syntactic characterizations of the subclass, as described in Meta-theorem 8.

Meta-theorem 8 (Class membership problem P→ P′)

Let f be a function computed by a transducer T of the class P. The following are equivalent:

(1) f can be computed by a transducer of the subclass P′;
(2) f verifies some semantic property (F);
(3) T verifies some syntactic property (T).

Furthermore (T) is decidable and the construction Item (3)⇒ Item (1) is effective.

Meta-proof of Meta-theorem 8. Item (1)⇒ Item (2) is in general rather easy once (F) has been
chosen. For Item (2)⇒ Item (3), we rely on combinatorial “pumping” arguments. Item (3)⇒ Item (1)
is the actual optimization procedure and the most difficult part of the proof. ◀

Formally, the decidability of the membership problem from P to P′ follows from the fact that the
property (T) is decidable. Furthermore, the semantic property (F) is not only a tool in the proof, but
also useful for showing by hand that a given function f is computable or not by a transducer from P′.
The various semantic and syntactic properties used in this manuscript are summarized in Table 9.

Membership problem Semantic property Syntactic property Statement
Blind ℓ-pebble transducer

↓
Blind k-pebble transducer

Output size
inO(nk)

Pumpability of
any transducer
(Definition 3.17)

Theorem 3.12

Last ℓ-pebble transducer
↓

Last k-pebble transducer

Output size
inO(nk)

Pumpability of
any transducer
(Definition 3.25)

Theorem 3.13

15In other words, we do not introduce new artificial models in order to solve artificial class membership problems.

Jump to contents

38 INTRODUCTION

ℓ-marble transducer
↓

k-marble transducer

Output size
inO(nk)

Barbells in
any transducer
(Lemma 4.47)

Theorem 4.11

Recursive marble transducer
↓

k-marble transducer

Output size
inO(nk)

Heavy cycles in
any transducer
(Lemma 4.47)

Theorem 4.12

ℓ-pebble transducer with
output in Z orN

↓
k-pebble transducer with

output in Z orN

Output size
inO(nk)

Pumpability of
any transducer
(Definition 5.50)

Theorem 5.25

Pebble transducer with
output in Z orN

↓
Blind pebble transducer
with output in Z orN

Repetitiveness
(Definition 6.13)

Permutability of
any transducer
(Definition 6.28)

Theorem 6.17

Pebble transducer with
output in Z
↓

Aperiodic pebble transducer
with output in Z

Smoothness
(Definition 7.15)

Aperiodicity of a
canonical transducer
(Definition 7.50)

Theorem 7.19

One-way non-deterministic
transducer of infinite words

↓
Two-way deterministic

transducer of infinite words

Continuity
(Proposition-

Definition 8.41)

Twinning property
of any transducer
(Lemma 10.8)

Theorem 10.1

Table 9: Main class membership problems solved in this manuscript.

Observe that Meta-theorem 8 does not deal with a canonical object associated to the function f : the
property (T) is applicable to any transducer of P. This way, we circumvent the difficulties which are
inherent to the constructions of canonical models, at the cost of doing somehow combinatorial proofs.
We shall nevertheless rely on a canonical object for showing the penultimate line of Table 9.

Optimization for variants of pebble transducers. The first results of this manuscript deal with vari-
ants of pebble transducers. Recall from the previous section that for 1 ⩽ k ⩽ ℓ, the functions computed
by k-pebble transducers do not coincide in general with the functions computed by ℓ-pebble transducers
whose output size isO(nk). Furthermore, the related class membership problems are open.

In order to provide optimization results while overcoming this issue, we focus on three pre-existing
subclasses of k-pebble transducers, which are defined by weakening the nesting behavior :

▶ blind k-pebble transducers from [NNP21]16, which are k-pebble transducers where an auxiliary
transducer cannot see17 the pebblesmarking the nested calls done by its ancestors. In otherwords,
it corresponds to nested functionswhich do not provide the current position as an argumentwhen
doing a nested call. This behavior is depicted in Figure 10a (to be compared with Figure 6);

16The original terminology of [NNP21] is comparison-free k-pebble transducers.
17That is why the machine is said to be “blind”.

Jump to contents

39

▶ last k-pebble transducers from [EHS07]18, which are k-pebble transducerswhere an auxiliary trans-
ducer can only see the pebble dropped by its parent, but no the full history of the former pebbles.
This behavior is depicted in Figure 10b (the purple pebble disappears in the third input);

▶ k-marble transducers from [EHV99], which are k-pebble transducers where the input of an auxil-
iary transducer is only the prefix of the original input which ends in the calling position. Hence
the size of the input decreases at each nested call. This behavior is depicted in Figure 10c. Observe
that k-marble transducers can be seen as a restriction of last k-pebble transducers.

⊢ ⊣

⊢ ⊣

⊢ ⊣

(a) Blind 3-pebble transducer.

⊢ ⊣

⊢ ⊣

⊢ ⊣

(b) Last 3-pebble transducer.

⊢ ⊣

⊢ ⊣

⊢ ⊣

(c) 3-marble transducer.

Figure 10: Behavior of variants of pebble transducers.

We show that for all 1 ⩽ k ⩽ ℓ, a function computed by a blind ℓ-pebble transducer (resp. by a last
ℓ-pebble transducer, resp. by a ℓ-marble transducer) can be computed by a blind k-pebble transducer
(resp. by a last k-pebble transducer, resp. by a k-marble transducer) if and only if its output has size
O(nk). The membership problems are decidable and the constructions are effective, which yields op-
timization procedures. Surprisingly enough, the characterization of the minimal nesting depth by the
size of the output is tight for last pebble transducers, in the sense that it fails for more powerful models.

Marble transducers have been extended to the model of recursive marble transducers, in which the
nested calls are allowed to be recursive (hence the nesting depth is no longer bounded). Such recursive
machines can produce outputs whose size is exponential in the input. We show that a function computed
by a recursive marble transducer can be computed by a k-marble transducer for some k ⩾ 1 if and
only if its output has sizeO(nk). The membership problem is decidable and the conversion is effective,
which yields another optimization result: this procedure removes recursion whenever it is possible. The
various classes of functions computed by the aforementioned models are compared in Figure 11.

POLYREGULAR
Pebble transducers

REGULAR
Two-way transducers

Blind pebble transducers
Recursive

marble transdu
cersMarble transduc

ers

Last pebble transducers

Figure 11: Classes of functions computed by variants of pebble transducers.

18The original terminology of [EHS07] is invisible k-pebble transducers.

Jump to contents

40 INTRODUCTION

The proof techniques for solving the class membership problems for blind pebble transducers and
last pebble transducers are very close. They both rely on algebraic structures called factorization forests
[Sim90], which are a versatile tool for decomposing the behavior of a two-way transducer into a finite
number of elementary patterns. For (recursive) marble transducers, the proof techniques are rather dif-
ferent and rely on the correspondence with streaming string transducers (cf. next paragraph).

Marble transducers and streaming string transducers. Recall that the class of functions computed
by two-way transducers (regular functions) is also captured by copyless streaming string transducers, which
are one-way transducers with registers. In this setting, the term “copyless” roughly means that the value
of a register (which is a portion of the final output) cannot be duplicated during a computation.

When dropping the copyless restriction of streaming string transducers, one is able to compute func-
tions whose output size is exponential in the input size. We show that this model is equivalent to the
aforementioned recursive marble transducers. Furthermore, for all k ⩾ 1 we devise copy restrictions
(weaker than copylessness) which make it equivalent to k-marble transducers. These results shed a new
light on the marble transducer model, by showing that its behavior is related to streaming algorithms.

Pebble transducers with commutative output. We then focus on pebble transducers whose output lies
in Z or N (formally, the transducer produces integers along its computation and finally returns the sum
of these integers). Such machines can be understood as nested loops which compute an integer. In this
setting, a key intuition is that the order in which the output is produced has no importance, due to com-
mutativity. We first show that the class of functions computed by pebble transducers with output in Z
(resp. N) coincideswith the class of functions computed bymarble transducers or last pebble transducers
with output inZ (resp. N), which does not holdwhen the outputs arewords (cf. Figure 11). Furthermore,
these functions describe a natural subclass of a celebrated class calledZ-rational series19 (resp. N-rational
series) and that the according class membership problem is decidable.

We additionally provide an optimization result for pebble transducers with output inZ orN. In this
setting, we consider that the “size” of an integer is its absolute value and show that a function can be com-
puted by a k-pebble transducer whenever its output size is inO(nk). This result roughly reformulates
a statement of Schützenberger [Sch62], with a different proof which relies on factorization forests. The
case ofZ is a bit tricky since the presence of negative integers enables to “remove” portions of the output
(which was not possible with words) and thus it can make the output size lower than expected.

Blindpebble transducerswith commutativeoutput. Interestingly enough, blindpebble transducers
(still with output in Z or N) turn out to be strictly weaker than pebble/last pebble/marble transducers.
Thus we investigate and solve the according class membership problem. In terms of program optimiza-
tion, this result provides a way to simplify a program with “for” loops by making its nested loop indices
work in an independent fashion. For the first time in this manuscript, it is no longer possible to use the
output size of the functions as a semantic property for discriminating between the classes, since both can
have outputs of polynomial size. Therefore we introduce a new property named repetitiveness and show
that it characterizes the functions computable by blind pebble transducers among those computed by
pebble transducers with output in Z orN. Once again, the proof relies on factorization forests.

Canonicalmodels for pebble transducerswith output inZ. Given a pebble transducer with output
in20Z, we describe a procedurewhich builds a canonical model associated to the function that it computes.

19In a general fashion, S-rational series are functions from words to a semiring S which are computed by a transducer model
called S-weighted automata (see e.g. [Sak09] for an introduction). Here we only consider the cases S := (Z,+,×) or (N,+,×).

20Interestingy, the author is not aware of a way to adapt the construction to output inN.

Jump to contents

41

This canonicalmodel can be seen as a specific formofmarble transducer. We call it the residual transducer
of the function, and its behavior is inspired by that of the minimal automaton of a regular language.

Recall that for regular languages (resp. rational functions), the construction of a canonical model
has been successfully used to decide the membership problem for star-free languages (resp. star-free ra-
tional functions), which are subclasses of independent interest. We shift the notion of star-freeness to the
functions computed by pebble transducers with output inZ orN, and provide multiple equivalent char-
acterizations of the related subclasses of functions. We finally show that one can decide if a function
computed by a pebble transducer with output inZ is star-free. The proof relies on a semantic condition
called smoothness, which translates to a (decidable) syntactic property of residual transducer that we call
aperiodicity (which is adapted from the notion of aperiodicity for one-way automata).

Deterministic regular functions of infinite words. The remaining results of this manuscript con-
cern transducers of infinite words. Since the literature is less advanced in this setting, we do not deal
with nested machines and we focus on the model of two-way transducers of infinite words.

We introduce the class of deterministic regular functions of infinite words as the class of functions com-
puted by two-way deterministic transducers of infinite words. Surprisingly enough, this class has never
been investigated in the literature, contrary to the well-studied regular functions of infinite words which
are defined by addingω-lookarounds to two-way transducers. Even if deterministic regular functions are
weaker than the regular ones (as depicted in Figure 12), they turn out to be more relevant when it comes
to practical applications. Indeed, any deterministic regular function is effectively computable.

REGULAR
Deterministic two-way transducers

withω-lookarounds

SEQUENTIAL
Deterministic one-way

transducers

RATIONAL
Functional non-deterministic

one-way transducers

DETERMINISTIC REGULAR
Deterministic two-way transducers

Figure 12: Classes of functions of infinite words.

We study themainproperties of deterministic regular functions and show that they forma robust and
natural class of functions of infinite words, which is closed under function composition. Furthermore,
we introduce two meaningful computation models which also capture this class:

▶ copyless streaming string transducers of infinite words (which are defined by adapting copyless stream-
ing string transducers of finite words). Such machines roughly describe streaming programs;

▶ two-way deterministic transducers enhanced with a weakened version of ω-lookarounds called
finite lookarounds. This model is mainly used as a powerful tool in the proofs.

An equivalent description in termsof compositions of basic functions is additionally presented21. Similar
results are known in the literature for regular functions of finite or infinite words, but the proofs in the
case of deterministic regular functions have to overcome specific additional difficulties.

21A logical description is also available in [CDFW23] but the author chose not to present this result in this manuscript.

Jump to contents

42 INTRODUCTION

Determinization of rational functions of infinite words. It is conjectured since [DFKL20] that
the class of deterministic regular functions is exactly22 the class of regular functions which are com-
putable/continuous. This result is believed to be rather difficult.

We provide a partial answer to this conjecture by showing that any computable/continuous rational
function of infinite words is deterministic regular. The author considers this hard result as one of the
jewels of this manuscript. Since continuity/computability is decidable, it solves the class membership
problem from rational functions of infinite words to deterministic regular functions. In practice, it en-
ables to build a deterministic program with bounded memory which computes a rational function.

Chapter by chapter outline

In Chapter 1, we recall the main definitions and properties of several transducer models of finite words
(one-way deterministic transducers, one-way non-deterministic transducers, two-way deterministic transducers,
pebble transducers). Chapter 2 provides a toolbox for the study of two-way transducers which is useful in
Chapters 3, 5 and 6. In Chapter 3, we describe variants of pebble transducers called blind pebble trans-
ducers and last pebble transducers and show how to optimize them. In Chapter 4, we introduce marble
transducers, relate them with streaming string transducers and show how to optimize them.

Chapter 5 focuses on pebble transducers whose output is in Z or N (and no longer in finite words) and
shows how they can be optimized. Furthermore, it connects the functions computed by these machines
to the celebrated classes of Z- and N-rational series. In Chapter 6, we solve the class membership prob-
lem from pebble transducers with output in Z or N to blind pebble transducers with output in Z or N.
Chapter 7 describes a procedure for transforming a pebble transducer with outputs inZ into a canonical
object. This result is leveraged to show that star-freeness is decidable in this setting.

In Chapter 8, we recall the main definitions and properties of several transducer models of infinite
words. Chapter 9 studies themain properties of deterministic regular functions of infinite words and provide
equivalent characterizations of this class, among others in terms of streaming string transducers of infinite
words. In Chapter 10, we show that a rational function of infinite words is deterministic regular if and only
if it is continuous, which solves yet another class membership problem.

22As for Footnote 14, a formal formulation would have to deal with extensions of functions.

Jump to contents

How to read this document

Et puis mille neuf cent radiateurs, vingt-trois mille mètres car-
rés de linoléum, deux cent douze kilomètres de fils électriques,
mille cinq cent robinets, cinquante-sept hydrants, cent soixante-
quinze extincteurs ! Ca compte, hein ? C’est immense, immense.
Par exemple, combien crois-tu que nous ayons de water-closets ?

Albert Cohen, Belle du Seigneur

Prerequisites

The reader is assumed to be familiar with the basics of automata theory, which includes the notions of
finite automaton, regular language and finite monoid. The books [Sip12, Chapter 1] (in English) and [Car14,
Chapitre 1] (in French) provide an introduction to this subject. Even though this manuscript is about
finite transducers, the underlying automata models are ubiquitous (in particular in the proofs).

Previous knowledge about finite transducers is useful but not necessary. Indeed, all the transducers
models used in this manuscript are defined in detail, in particular in Chapter 1 (over finite words) and
Chapter 8 (over infinite words). Their known properties are furthermore recalled when needed.

No pre-requisites in logics are required. Indeed, even if the theory of transductions and formal lan-
guages is tightly connected to logics, this manuscript does not deal with this relationship.

Hyperlinks and numbering

This manuscript was written using Thomas Colcombet’s package knowledge1. Roughly, this package
enables to define a term and later re-use this term while creating an internal hyperlink which points to
its definition. The reader is invited to jump within the document thanks to these hyperlinks. Some PDF
readers even offer an overview of the definition when hovering above an hyperlink. Furthermore, most
of them include a feature which enables to go back to the original page after a jump2.

The use of hyperlinks is only relevant for an electronic version of this manuscript. In order to sim-
plify the use of backward references in a printed version, the author has chosen to use a continuous num-
bering for definitions, theorems, propositions, lemmas, claims, examples, open problems, conjectures,
figures, equations, algorithms and tables. These numbers are prefixed by the number of the chapter.

1https://www.ctan.org/pkg/knowledge.
2For instance with the keys + ˆ on Apple’s Preview.

https://www.ctan.org/pkg/knowledge

44 HOW TO READ THIS DOCUMENT

Dependencies between chapters

The main dependencies3 between the chapters of this manuscript are depicted in Figure 13, where the
three different colors correspond to the three main parts.

Chapter 1
Background on transductions

of finite words

Chapter 2
From monoid morphisms to

factorization forests

Chapter 3
Making pebbles invisible: blind
and last pebble transducers

Chapter 4
Streaming computations and

marble transducers

Chapter 5
Polyregular functions with

commutative outputs

Chapter 6
Polyblind functions with
commutative output

Chapter 7
Star-free polyregular functions

with commutative output

Chapter 8
Background on transductions

of infinite words

Chapter 9
Deterministic regular functions

of infinite words

Chapter 10
Determinization of continuous

rational functions

Figure 13: Dependency graph of this manuscript.

Notations and conventions

In this section we provide an overview of the main notations and writing conventions which are used
throughout this manuscript. Most of them are re-defined when used for the first time.

Equality versus definition. The symbol= is generally used to denote an equality between two objects
which have already been defined. The symbol := is used to define new objects and to assign variables in
algorithms. For instance, x := v defines an object x which has value v.

Sets and functions. N (resp. Z,Q,R,C) denotes the set of non-negative integers (resp. integers, rational
numbers, real numbers, complex numbers). Ifm,n ∈ Z, we let [i:j] := {i, i+1, . . . , j−1, j} if i ⩽ j and
[i:j] := ∅ otherwise. If S is a finite or countable set, we let |S| ∈ N ∪ {∞} be its cardinality (or size).

Set inclusion (resp. strict set inclusion) is denoted ⊆ (resp. ⊂). If S, T are two sets, then S → T
denotes the type of total functions fromS to T . Furthermore, S ⇀ T denotes the type of partial functions
from S to T , i.e. of functions which are defined on a subset of S. If f has type S ⇀ T , we denote its
domain (i.e. the subset of S on which f is defined) by Dom(f).

Multisets. A multiset is a set with multiplicities, i.e. where elements can be duplicated. IfM is a finite
or countable multiset, we let |M| ∈ N ∪ {∞} be its cardinality (including multiplicities). Furthermore
we let |M|s ∈ N ∪ {∞} be the number of occurrences of the element s in M. We write s ∈ M to
denote thatM contains at least one occurrence of s, i.e. |M|s ⩾ 1.

3Other minor dependencies of references exist anyway from Chapter i to Chapter j for all 1 ⩽ i < j ⩽ 10.

Jump to contents

45

We use double braces {{· · · }} to denote multisets, for instanceM := {{s, s, t}} is such that |M|s = 2
and |M|t = 1. We denote by {{s1‡r1, . . . , sn‡rn}} a multiset containing n distinct elements s1, . . . , sn
of respective multiplicities r1, . . . , rn. For instance we haveM = {{s‡2, t‡1}}.

Machines. Symbols A ,B,L ,P,S ,T , etc. (in the mathscr font) are used in this manuscript to
denote automata and transducers. If T is such a machine, the expressions JT K or JJT KK usually denote
(variants of) its semantics, i.e. the function or the language that it computes.

Finite and infinite words. Capital letters A,B,C denote alphabets, which are finite sets of symbols
called letters. The symbols a, b, c, 0, 1 and# generally denote letters from an alphabet.

The setA∗ denotes the set of finite words (i.e. finite sequences) over the alphabetA. The empty word
is denoted ε. We letA+ := A∗∖{ε}. The setAω denotes the set of infinite words (i.e. infinite sequences)
overA andA∞ := A∗ ∪A∞ is the set of both finite and infinite words.

Ifu ∈ A∞, we let |u| ∈ N∪{∞} be its length. For 1 ⩽ i ⩽ |u|, u[i] ∈ A denotes the i-th letter4 ofu.
If a ∈ A, we let |u|a := |{1 ⩽ i ⩽ |u| | u[i] = a}| ∈ N∪{∞} be the number of occurrence of letter a
in u. If I = {i1 < i2 < · · · } ⊆ [1:|u|], we let u[I] := u[i1] · · ·u[iℓ]. In particular, if 1 ⩽ i ⩽ j ⩽ |u|,
u[i:j] stands for u[i]u[i+1] · · ·u[j] and if j < i then u[i:j] = ε. We write u[i:] for u[i:|u|].

Word languages and word functions. If A is an alphabet, we say that L ⊆ A∗ (resp. L ⊆ Aω)
is a language of finite words (resp. of infinite words). In this case, the function 1L : A

∗ → {0, 1}
(resp. 1L : A

ω → {0, 1}) denotes the characteristic function of the language L. We let RegLang(A)
(resp. ωRegLang(A)) be the set of regular languages ofA∗ (resp. of ω-regular languages ofAω).

IfA,B are alphabets and f has typeA∗ ⇀ B∗ orAω ⇀ Bω , we use the roman letters u, v, w, etc.
to denote the words ofA∗ orAω and the greek letters α, β, γ, etc. for the words ofB∗ orBω .

Word prefixes. Given u, v ∈ A∞, we write u ⊑ v when u is a prefix of v (i.e when |u| ⩽ |v| and for
all 1 ⩽ i ⩽ |u|, u[i] = v[i]). We write u ⊏ v when u is a strict prefix of u. We say that two words u and
v are mutual prefixes if either u ⊑ v or v ⊑ u. Given u, v ∈ A∞, we let u∧v be the (finite or infinite)
longest common prefix of u and v. If u and v are mutual prefixes, we let u∨v be the longest of them.

Algebraic objects. If S := N,Z,Q,R orC, we denote by S[X] the set of polynomials inX which have
coefficients inS. Furthermore,S[X1, . . . , Xn]denotes the set ofmultivariate polynomials inX1, . . . , Xn.
Given γ ∈ C, the value |γ| denotes5 its module (in particular, it is the absolute value if x ∈ R).

Given finite sets S, T , we denote by MS,T (S) the set of matrices with coefficients in S and whose
lines (resp. columns) are indexed by S (resp. T). Ifm,n ⩾ 0, we write Mm,n for M[1:m],[1:n].

The symbolsM and T (resp. µ and ν) generally denote finite monoids (resp. monoid morphisms).

4Beware that numbering of sequences therefore begins at 1 (and not at 0).
5The reader may observe that | · | denotes at the same time the cardinality of a set or a multiset, the length of a word and the

modulus of a complex number. However, the context will always make it clear since these objects have different types.

Jump to contents

46 HOW TO READ THIS DOCUMENT

Jump to contents

Part I

Optimization of pebble transducers

Chapter 1

Background on transductions of
finite words

Le galet n’est pas une chose facile à bien définir.
Si l’on se contente d’une simple description l’on peut dire d’abord
que c’est une forme ou un état de la pierre entre le rocher et le
caillou.
Mais ce propos déjà implique de la pierre une notion qui doit être
justifiée. Qu’on ne me reproche pas en cette matière de remonter
plus loin même que le déluge.

Francis Ponge, « Le galet », Le parti pris des choses

As mentioned in Introduction, the class of regular languages can be described to by various models
of finite automata, which can be either be deterministic or non-deterministic, and either process their
input by doing a single pass (one-way) or by also doing left moves (two-way). The notion of regularity
for languages can be lifted to functions of finite words by defining various model of finite transducers.
These machines are built by applying a generic receipt: we start from an finite automaton model which
recognizes regular languages and we add outputs labels on its transitions.

POLYREGULAR
Deterministic pebble transducers

SEQUENTIAL
One-way deterministic

transducers

RATIONAL
Functional one-way

non-deterministic transducers

REGULAR
Two-way deterministic transducers

first-to-last : a1 · · · an 7→ a2 · · · ana1

last-to-first : a1 · · · an 7→ ana1 · · · an−1

mirror : a1 · · · an 7→ an · · · a1

blind-square : u 7→ (u#)|u|

Figure 1.1: Classes of functions over finite words described in Chapter 1.

50 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

The goal of this chapter is to give a library of the various transducer models which will be studied in
Part I. More precisely, we shall define in Sections 1.1 to 1.3 the following machine models:

▶ one-way deterministic transducers, which define the class of sequential functions;
▶ one-way non-deterministic transducers, which define the class of rational functions;
▶ two-way deterministic transducers, which define the class of regular functions;
▶ pebble transducers, which define the class of polyregular functions.

These classes are often considered as several functional counterparts of regular languages, due to
their robustness and their algorithmic properties. Their expressive powers are compared in Figure 1.1.

We also recall that all themembership problems fromone class to another are known to be decidable.
These decidability results can be understood as program optimization techniques, since they enable to
transform a complex device into an equivalent simpler one, whenever it is possible.

1.1 One-way transductions

The classes of functions described in Section 1.1 are computed by one-way finite automata enhanced
with the ability to produce outputs along their runs. These machines can either be deterministic (which
defines sequential functions) or non-deterministic (rational functions).

1.1.1 Sequential functions

We first describe the simplestmachinemodel considered in thismanuscript, named one-way deterministic
transducer. It can be seen as a finite-state machine a one-way read-only input tape and a one-way write-
only output tape, as depicted in Figure 1.18. It is thus a very basic kind of streaming algorithm.

Read

Input word

Output word

Write

Finite set of
control states

Figure 1.2: Behavior of a one-way deterministic transducer.

Such machines have been studied since the early days of automata theory [Gin62, GR66, Eil74].

Definition 1.3 (One-way deterministic transducer)

A one-way deterministic transducer (1DT) T = (A,B,Q, q0, F, δ, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with an initial state q0 ∈ Q;
▶ a final output function F : Q ⇀ B∗;
▶ a transition function δ : Q×A ⇀ Q;
▶ an output function λ : Q×A ⇀ B∗.

Jump to contents

1.1. ONE-WAY TRANSDUCTIONS 51

The semantics of the 1DT is defined as follows. We write q a|α−−→ q′ whenever δ(q, a) = q′ and
λ(q, a) = α. A run labelled by a word a1 · · · an ∈ A∗ is a sequence p0 a1|α1−−−→ p1 · · · an|αn−−−−→ pn. We say
that the run is initial if p0 = q0, and final if pn ∈ Dom(F). A run is accepting if it is both initial and final.
Let us define the function JT K : A∗ ⇀ B∗ computed by T . Let u ∈ A∗ be the input, then JT K(u) is
defined if and only if there exists an accepting run of T labelled by u (observe that it has to be unique).
If p0 a1|α1−−−→ p1 · · · an|αn−−−−→ pn denotes this run, we let JT K(u) := α1 · · ·αnF (pn).

Example 1.4 (First to last)

Let A := {a, b}. The function first-to-last : A+ → A+ which maps au to ua (resp. bu to ub)
for u ∈ A∗ is computed by the 1DT depicted in Figure 1.5a (initial states have incoming arrows,
whereas final states have outing arrows labelled by their outputs).

q0

qa

qb

a|ε

b|ε

a|a
b|b

a|a
b|b

a

b

(a) 1DT computing the function
first-to-last.

q0 q1

q2

a|a
b|b

a|ε
b|ε

a|ε
b|ε

a|a
b|b

a|ε
b|ε

(b) Real-time 1NT computing the
relation factors.

qa

qb

pa

pb

qf

a|aa
b|ba

a|ab
b|bb

a|a
b|a

a|b
b|b

a|ε

b|ε

(c) Real-time and unambiguous
1NT computing last-to-first.

Figure 1.5: Functions and relations computed by 1DT and 1NT.

Definition 1.6 (Sequential function)

The class of sequential functions1 is the class of functions computed by 1DT.

It is easy to see that the domain of a sequential function is a regular language, since it is described
by the one-way deterministic automaton (A,Q, q0,Dom(F), δ). This class of functions enjoy numer-
ous properties (see e.g. [Sak09] for a survey) such as closure under composition, or a purely semantics
characterization in terms of pre-images of regular languages and bounded variations [GR66, Sch77].

Given a sequential function computed by a 1DT one can effectively compute a canonical (in the sense
that it is intrinsically associated to the function, and does not depend on themachine which was given to
describe it) 1DT that computes it. The construction of this canonical 1DT is inspired by theminimization
algorithm of deterministic automata, see e.g. [Cho03] or [CP17, Section 4].

1.1.2 Rational functions

It is well-known that non-deterministic automata are as expressive as the deterministic ones, since both
models compute regular languages. It is thus very natural to add non-determinism, together with ε-
transitions, to 1DT. The study of the relations described by such non-deterministic machines goes back
to [EM65], following the models introduced in [RS59, Chapter III].

1In part of the literature (e.g. [Sch77, Cho77] or more recently [FGRS13]), our sequential functions are called subsequential
functions. In their case, the term sequential is devoted to the functions where F (q) = ε for all q ∈ Q.

Jump to contents

52 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

Definition 1.7 (One-way non-deterministic transducer)

A one-way non-deterministic transducer (1NT) N = (A,B,Q, I, F,∆, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with initial states I ⊆ Q and final states F ⊆ Q;
▶ a transition relation∆ ⊆ Q× (A ∪ {ε})×Q;
▶ an output function λ : ∆→ B∗.

The semantics of a 1NT is defined in a similar way to that of a 1DT. We write q u|α−−→ q′ whenever
(q, u, q′) ∈ ∆ (beware that here u ∈ A ∪ {ε}) and α = λ(q, u, q′). A run labelled by an input word
u1 · · ·un ∈ A∗ is a sequence p0 u1|α1−−−→ q1 · · · un|αn−−−−→ pn. The word α1 · · ·αn ∈ B∗ is said to be the
output along the run. We say that the run is initial if p0 ∈ I , and final if pn ∈ F . It is accepting if it is both
initial and final. The relation JN K ⊆ A∗ ×B∗ computed by N , is defined as follows:

JN K := {(u, α) | α ∈ B∗ is output along some accepting run labelled by u},

i.e. an input word is mapped to all the possible outputs of accepting runs labelled by itself.
Observe that 1DT can been seen as a particular case of 1NT. Indeed, even if our definition of 1NT

has no final function F : Q ⇀ B∗, it can be encoded e.g. using ε-transitions (i.e. transitions of shape
(q, ε, q′) in∆). We say that a 1NT is real-time if it has no ε-transition.

Example 1.8 (Factors)

The relation factors ⊆ A∗ × A∗ defined by (u, α) ∈ factors if and only if α is a factor of u is
computed by the real-time 1NT depicted in Figure 1.5b.

In this manuscript, we focus on the functions which are described by the various machines, and
not on the relations (since the latter cannot be computed by deterministic algorithms). Let us recall the
classical notions of functionality and unambiguity in order to describe the functions computed by 1NT.
Definition 1.9 is made generic so that it can be re-used for other non-deterministic models.

Definition 1.9 (Functionality, unambiguity)

A non-deterministic machine is said to be functional if it computes a relation r ⊆ A∗ × B∗ such
that for all u ∈ A∗, there exists at most one α ∈ B∗ such that (u, α) ∈ r (in other words, r can
be seen as a partial function A∗ ⇀ B∗). The machine is said to be unambiguous if for all input
u ∈ A∗, there exists a most one accepting run labelled by u.

Observe that any unambiguous machine is functional. The converse does not hold, but it is well-
known that any functional 1NT can be transformed in a real-time and unambiguous 1NT computing the
same function (the result follows from [Eil74, Theorem IX.2.2] which deals with uniformization, see also
[CL11, Remark 12]). This result requires to ignore the input ε, whose image is necessarily ε in a real-time
1NT, but may not be empty in general (and in particular for a 1DT with a final function).

Definition 1.10 (Rational function)

The class of rational functions is the class of functions computed by functional 1NT.

It turns out that rational functions are strictly more expressive than sequential functions, roughly
because non-determinism enables one to describe local transformations which depend on properties of
the future of the input string (for instance that depend on its last letter, see Example 1.11).

Jump to contents

1.1. ONE-WAY TRANSDUCTIONS 53

Example 1.11 (Last to first)

Let A := {a, b}. The function last-to-first : A+ → A+ that maps ua to ua (resp. ub to bu) for
u ∈ A∗ is computed by the real-time and unambiguous 1NT depicted in Figure 1.5c. Contrary to
the function first-to-last of Example 1.4, it is easy to show that last-to-first is not sequential.

1.1.2.1 Equivalent formalisms. Rational functions are closed under composition (it is also the case
for the relations computed by 1NT). Furthermore, this class is captured by several formalisms, including
a logical model called order-preserving monadic second-order transductions (order-preserving MSO trans-
ductions for short), see [Boj14, Theorem 4.1] or [Fil15, Theorem 4].

Rational functions can also be described as compositions of sequential functions and sequential func-
tions which process the input from right to left, as shown in Proposition 1.12 originating from [EM65,
Theorem 7.8]. We let mirror : u = a1 · · · an 7→ ũ := an · · · a1 be the mirror image function.

Proposition 1.12 (Rational = left sequential ◦ right sequential)

A function is rational if and only if it can be written as a composition f ◦mirror ◦ g ◦mirror where
f and g are sequential functions.

In otherwords, rational function canbe computed in a deterministic fashion, at the cost of processing
the input both from left to right and from right to left. This very idea is the heart of the bimachinemodel
introduced in [Sch61b] and later named in [Eil74]. Such amachine produces an output in each position of
its input word, depending on a regular property of the input where the current position is distinguished.
We recall that RegLang(A) denotes the set of regular languages ofA∗.

Definition 1.13 (Bimachine)

A bimachine B = (A,B, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ an output function λ : RegLang(A)×A× RegLang(A)⇀ B∗ such that:

(1) Dom(λ) is finite;
(2) for all (L, a,R) ̸= (L′, a, R′) ∈ Dom(λ),RaL ∩R′aL′ = ∅.

The function JBK : A∗ ⇀ B∗ computed by B is defined as follows. Let u ∈ A∗, then by the last
item of Definition 1.13 for all 1 ⩽ i ⩽ |u|, there exists at most one (Li, u[i], Ri) ∈ Dom(λ) such
that u[1:i−1] ∈ Li and u[i+1:|u|] ∈ Ri. If such an (Li, u[i], Ri) exists for all 1 ⩽ i ⩽ |u|, we let
JBK(u) := λ(L1, u[1], R1) · · ·λ(L|u|, u[|u|], R|u|), and otherwise JBK(u) is undefined.

Note that Item (1) of Definition 1.13 ensures that the machine has a finite description (the regular
languages in Dom(λ) can be given e.g. by one or several finite automata, or equivalently by a morphism
into a finite monoid). The behavior of a bimachine is depicted in Figure 1.14.

Input wordu[i]

u[1:i−1] ∈ Li u[i+1:|u|] ∈ Ri

Figure 1.14: Behavior of a bimachine when producing λ(Li, u[i], Ri).

Jump to contents

54 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

Example 1.15 (Last to first)

The function last-to-first of Example 1.11 is computed by bimachine inputting a1 · · · an ∈ A+

and outputs a1an in position 1, ai in position i for 1 < i < n and ε in position n.

Now, we reformulate Proposition 1.12 by recalling that bimachines compute rational functions. We
safely ignore in Proposition 1.16 the case of input ε (but it can formally be treated by adding a specific
output value, at the cost of burdening Definition 1.13).

Proposition 1.16 (Rational = Bimachine)

A function is rational if and only if it can be computed by a bimachine.

One of the most striking results on bimachines is the existence and computability of a canonical
bimachine associated to each rational function [RS91], generalizing the aforementioned result of 1DT.
The construction of [RS91] has been refined in [FGL19] to decide whether a rational function can be
described by some bimachine whose languages are star-free (see Open question 7.5).

1.1.2.2 Decision problems. It is well-known that the equivalence problem for rational functions is
decidable, while the same problem for relations computed by 1NT becomes undecidable (see e.g. [Ber13,
Chapter 4] for a survey). Furthermore, one can decide if a 1NT is functional.

Let us discuss the membership problem from rational functions to sequential functions. This prob-
lem was first shown decidable in [Cho77, Corollaire 3.5], and a polynomial-time complexity bound was
later given in [WK95, Theorem 4.3] and [BCPS03]2. The proof consists in showing that the runs of
a 1NT computing a sequential function must follow specific patterns, which are often called twinning
properties (see Lemma 10.8 for similar ideas over infinite words). Furthermore, one can build a 1DT
which computes the function, whenever it exists. Hence this construction can be seen as a first program
optimization result, since it enables to build a simple deterministic machine whenever it exists.

Theorem 1.17 (Rational→ Sequential)

One can decide if a rational function (given by a 1NT) is sequential. If this property holds, one can
build a 1DT which computes the function.

1.2 Regular functions

In this section, we describe finite-statesmachineswhich can travel back and forth on their input, without
modifying it. For the machine to detect the borders of its input without leaving it, a symbol ⊢ (resp.
⊣) is added before the first (resp. after the last) position. This definition builds the model of two-way
deterministic automaton (when seen as an acceptor for languages) whose study was initiated in the 1950s.
Surprisingly enough, it turns out that despite the ability of backwards reference, thesemachines compute
no more than regular languages (see [RS59, Theorem 15], which refers to the main result of [She59]).

1.2.1 Two-way transducers

A two-way transducer consists of a two-way automaton which produces outputs along its transitions. It
can also be seen as a finite-state machine with two tapes, as depicted in Figure 1.18.

2Beware that these papers use the subsequential terminology.

Jump to contents

1.2. REGULAR FUNCTIONS 55

Read

Input word⊢ ⊣

Output word

Write

Finite set of
control states

Figure 1.18: Behavior of a two-way deterministic transducer.

This model is mentioned in [She59, Note 4], but its study formally began with [AHU69].

Definition 1.19 (Two-way deterministic transducer)

A two-way deterministic transducer (2DT) T = (A,B,Q, q0, F, δ, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with an initial state q0 ∈ Q and a set F ⊆ Q of final states;
▶ a transition function δ : Q × (A ⊎ {⊢,⊣}) ⇀ Q × {◁, ▷} such that for all q ∈ F and
a ∈ A ⊎ {⊢,⊣}, δ(q, a) is undefined;

▶ an output function λ : Q× (A ⊎ {⊢,⊣})⇀ B∗ with same domain as δ.

A configuration of T over a word u ∈ (A ⊎ {⊢,⊣})∗ is a tuple (q, i) where q ∈ Q is the current
state and 1 ⩽ i ⩽ |u| is the current position of the reading head. The transition relation −→ of T over
input u is defined as follows. If (q, i) is a configuration, the transition (q, i) −→ (q′, i′) holds whenever
either δ(q, u[i]) = (q′, ◁) and i′ = i− 1 (move left), or δ(q, u[i]) = (q′, ▷) and i′ = i+1 (move right).
A run of T labelled by u is a finite sequence of configurations (q1, i1) −→ · · · −→ (qn, in).

The partial function JT K : A∗ ⇀ B∗ computed byT is defined as follows. Letu ∈ A∗ be the input,
and consider the runs ofT over the word ⊢u⊣. We say that a run is initial if it starts in (q0, 1), and final
if it ends in a configuration of shape (q, |⊢u⊣|) with q ∈ F . A run is accepting if it both initial and final.
The output JT K(u) is defined if and only if there exists a (necessarily unique) accepting run (q1, i1) −→
· · · −→ (qn, in) labelled by ⊢u⊣. In this case, JT K(u) is the concatenation λ(q1, u[i1]) · · ·λ(qn, u[in])
of the outputs produced along this run.

An initial run of a 2DT is depicted informally in Figure 1.20.

Input word⊢ ⊣

Two-way transducer

Figure 1.20: Initial run of a two-way transducer.

Example 1.21 (Copy)

The function u 7→ uu can be computed by a 2DT which performs a first left-to-right pass on its
input (until ⊣), then a right-to-left pass (until ⊢), a finally a second left-to-right pass.

Jump to contents

56 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

Example 1.22 (Reverse)

The function mirror : u 7→ ũ can be computed by a 2DT which performs a left-to-right pass fol-
lowed by a right-to-left pass while producing outputs.

Example 1.23 (Map copy reverse)

The functionmap-copy-reverse : (A⊎{#})∗ → (A⊎{#})∗ has an input of shape u1# . . .#un
where each ui ∈ A∗ and outputs u1#ũ1# . . .#un#ũn. It can be computed by a 2DT which
visits each factor ui from left to right (to output ui#), then from left to right (to output ‹ui#), and
finally from left to right (only to reach the next factor).

It is not hard to show that none of the functions from Examples 1.21 to 1.23 is rational.

Definition 1.24 (Regular functions)

The class of regular functions is the class of functions computed by 2DT.

1.2.2 Normalization and origin semantics

The first goal of this section is to claim that any 2DTω can be normalized, i.e. put in a somehow simple
shape while removing domain issues. Next, we define an extended semantics for 2DTω , which enables
to describe which input positions were used to produce which output letters. This notion, called origin
semantics, was first introduced in [VDKT93] and later investigated in detail for transductions in [Boj14].
We shall not study origin semantics for itself, but only as a tool to deal with nested 2DT. Indeed, such
machines are 2DTω which “call” other 2DTω in any position of the input, while marking this position.

1.2.2.1 Normalized two-way transducers. Since two-way automata recognize regular languages, it
is easy to see that the domain of a regular function is (effectively) a regular language. We can therefore
complete any partial regular function into a total one, by modifying the given 2DT so that is does a first
pass on the input to check if it belongs to the domain, and produces a specific output if it is not the case.
This motivates the definition of normalized 2DT, which also deals with the end-markers.

Definition 1.25 (Normalized two-way transducer)

We say that a two-way transducerT = (A,B,Q, q0, F, δ, λ) is normalized if the following holds:

▶ it computes a total function, i.e. it has exactly one accepting run on each ⊢u⊣;
▶ for all q ∈ Q and a ∈ A, λ(q, a) ∈ B ∪ {ε} (at most one letter);
▶ for all q ∈ Q, λ(q,⊢) = λ(q,⊣) = ε (no outputs on the end-markers).

From now on, we freely assume that our 2DT are always normalized. Once more, we (safely) ignore
the case of input ε, for which the output is necessarily ε in a normalized machine.

Let ρ := (q1, i1) −→ · · · −→ (qn, in) be the run of a normalized 2DT over ⊢u⊣. We say that the
sequence ρ′ := (qj , ij−1)1⩽j⩽n and 1<ij<|⊢u⊣| is an n-run ofT labelled by u ∈ A∗. Roughly, ρ′ is ρ in
which we removed all configurations on letters ⊢ and ⊣, while offsetting in order to send the remaining
positions into [1:|u|]. Thus it is nearly a run ofT labelled by u, but it may not be formally the case (due
to the borders). Observe that the production along ρ′ is the same as that along ρ. If ρ is accepting (resp.
initial, resp. final), we say that ρ′ is accepting (resp. initial, resp. final).

Jump to contents

1.2. REGULAR FUNCTIONS 57

1.2.2.2 Origin semantics. Given a normalized 2DT, now we present an extension of its semantics
which captures the precise relation between the output and the input positions. In practice, the origin
semantics consists in labelling each position of the output by the input position in which it was created.

If u ∈ B∗ and i ∈ N, we let u⋉i := (u[1], i) · · · (u[|u|], i) ∈ (B × N)∗.

Definition 1.26 (Origin semantics)

Let T = (A,B,Q, q0, F, δ, λ) be a normalized 2DT. We let the function f : A∗ → (B × N)∗
computed by T in origin semantics be defined as follows. Given u ∈ A∗, if (q1, i1) −→ · · · −→
(qn, in) be the accepting n-run of T labelled by u, then:

f(u) := (λ(q1, u[i1])⋉i1)(λ(q2, u[i2])⋉i2) · · · (λ(qn, u[in])⋉in).

Observe that the function JT K : A∗ → B∗ computed by T is the first component of f .

Example 1.27 (Copy, reverse)

The function a1 · · · an 7→ (a1, 1) · · · (an, n)(a1, 1) · · · (an, n) is computed in origin semantics
by the 2DT from Example 1.21. The function a1 · · · an 7→ (an, n) · · · (a1, 1) is computed in
origin semantics by the 2DT from Example 1.22.

1.2.3 Two-way transducers with lookarounds

In this section, we extend the model of 2DT with an extra feature called lookarounds. Intuitively, a 2DT
with lookarounds is a 2DT enhanced with the ability to choose its transitions depending on a regular
property of its input where the current position is distinguished. In other words, it is a mix between
a 2DT and a bimachine. Lookarounds are a key concept in the study of 2DT, since they provide more
flexibility when building machines. They were first studied in [HU67] for two-way automata.

Definition 1.28 (Two-way transducer with lookarounds)

A two-way deterministic transducer (2DT) with lookarounds consists of a modified two-way de-
terministic transducer T = (A,B,Q, q0, F, δ, λ) such that:

▶ the transition function δ has type (Q× RegLang(A)×A× RegLang(A))⇀ Q;
▶ the output function λ has type (Q× RegLang(A)×A× RegLang(A))⇀ B∗;
▶ Dom(δ) = Dom(λ) and this set is finite;
▶ for all (q, L, a,R) ̸= (q, L′, a, R′) ∈ Dom(δ), we have LaR ∩ L′aR′ = ∅.

The semantics of a 2DT with lookarounds is similar to that of 2DT, with the difference that the
transition relation is no longer local. Let u ∈ A∗ and (q, i) be a configuration of T over u, then by the
last item of Definition 1.28 there exists at most one tuple (q, L, u[i], R) ∈ Dom(δ) such thatu[1:i−1] ∈
L and u[i+1:n] ∈ R. The transition (q, i) −→ (q′, i′) holds whenever either δ(q, L, u[i], R) = (q′, ◁)
and i′ = i − 1, or δ(q, L, u[i], R) = (q′, ▷) and i′ = i + 1. The notion of run is defined accordingly.
The function computed by a 2DT with lookarounds is defined as for a 2DT.

Observe that no ⊢ nor ⊣ are needed in this case, since the machine can detect the borders with the
lookarounds. The notions of normalizedmachine (and n-run) can be extended to 2DTwith lookarounds.
The function computed in origin semantics by a 2DT with lookarounds is defined as for a 2DT.

Jump to contents

58 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

Example 1.29 (Rational functions using a lookaround)

It is easy to see that any bimachine can be simulated by a 2DTwith lookarounds which has a single
state. As a consequence, any rational function can be computed by this model.

The celebrated tree construction from [HU67, Lemma3] has been leveraged to show that lookarounds
do not give extra expressiveness to 2DT. An improved construction (used for 2DT composition3) is given
in [DFJL17, Section 4]. Furthermore, the proofs preserve the origin semantics of themachines (this result
will be used when dealing with pebble transducers in Section 1.3.2), as claimed in Theorem 1.30.

Theorem 1.30 (Lookarounds removal)

Given anormalized 2DTwith lookarounds, one canbuild annormalized 2DT (without lookarounds)
which computes the same function in origin semantics.

In particular, 2DT with lookarounds are as expressive as 2DT.

As an easy consequence of Example 1.29 and Theorem 1.30, one can observe that rational functions
are a subclass of the regular ones. Note that this property was not obvious at first glance, due to the fact
that 2DT are deterministic while 1NT are not. Furthermore, the inclusion is strict.

1.2.4 Basic properties of regular functions

The goal of this section is to recall well-known properties of regular functions.

1.2.4.1 Composition and decomposition. Closure under composition of regular functions can be
shown by doing a product construction and crucially relying on Theorem 1.30. The curious reader is
invited to consult Section 9.5 for a similar detailed proof in the (more complex) case of deterministic
regular functions of infinite words. In the literature, closure under composition was first claimed in
[CJ77], and a more efficient construction (in exponential time) is given in [DFJL17].

Theorem 1.31 (Composition of regular functions)

The class of regular functions is (effectively) closed under composition.

Now, let us give an analogue of Proposition 1.12 which decomposed rational functions using the
sequential ones. To our knowledge, the next result is not stated explicitly in the literature, but a gener-
alization to infinite alphabets has been proven in [BS20, Theorem 13].

Theorem 1.32 (Decomposition of regular functions)

A function is regular if and only if can be written as a composition of sequential functions (or
rational functions) and map-copy-reverse functions. The conversions are effective.

1.2.4.2 Equivalent formalisms. Several equivalent descriptions of regular functions have been stud-
ied. In [EH01]4, a logical model called monadic second-order transductions (MSO transductions for short)
was shown equivalent to regular functions. Informally, an MSO transduction is a collection of MSO

3Closure under composition (Theorem 1.31) and lookaround removal (Theorem 1.30) are in fact equivalent.
4This seminal paper created a renewed interest for the study of regular functions, which continued to this day.

Jump to contents

1.3. POLYREGULAR FUNCTIONS 59

formulas with 2 free first-order variables, whose semantics shows how to encode an output word within
a bounded number of copies of the input. Various formalisms that use combinators, in the spirit of regu-
lar expressions for regular languages, have also been shown to capture regular functions [AFR14, DGK18,
BDK18, BR18]. Another equivalent transducer model, called copyless streaming string transducers, will
be discussed in Corollary 4.35 which originates from [AC10].

On the other hand, extending 2DT with non-determinism does not increase their expressive power
when they define functions: functional two-way non-deterministic transducers describe no more than reg-
ular functions (this result was first shown in [Eng81, Theorem 4.9]). For this reason, we shall never
consider two-way non-deterministic transducers in this manuscript.

1.2.4.3 Decision problems: class membership and equivalence. The class membership problem
from regular functions to rational functions was first shown decidable in [FGRS13, Theorem 1]. An
elementary complexity bound was later given in [BGMP18, Theorem 3.3], see also [MP19, Theorem 11]
for a survey of the complexity upper and lower bounds. Oncemore, the result enables to effectively build
a simpler machine which computes the function, whenever it is possible.

Theorem 1.33 (Regular→ Rational)

One can decide if a regular function is rational. If this property holds, one can build a 1NTwhich
computes the function.

As a generalization of the rational case, equivalence of regular functions is decidable. This result
was first shown in [Gur80, Theorem 1] by reduction to equivalence of some bounded counter machines
model. A modern andmore conceptual proof, which relies on Hilbert’s basis theorem, is available e.g. in
[Boj19]. However, there is no known canonical object to describe regular functions5.

Theorem 1.34 (Equivalence of regular functions)

Given two regular functions f, g : A∗ ⇀ B∗, one can decide if f = g.

1.3 Polyregular functions

It is easy to observe that if f : A∗ → B∗ is regular, then |f(u)| = O(|u|). Indeed, the lengths of the
accepting run of a 2DT with states Q, labelled by u ∈ A∗, is at most (|u|+2)|Q| (otherwise it would
visit twice the same configuration). In Section 1.3, we describe a class of functions whose output can be
polynomial in the input size, named polyregular functions.

1.3.1 Pebble transducers

A basic idea for enriching two-way automata is to allow them to drop a bounded number k of marks on
their input string. This way, the number of configurations is a polynomial (of degree k) in the input size.
However, a direct implementation of this idea yields the same expressive power as deterministic Turing
machines with logarithmic space6, see [Iba71, Corollary 3.5] and [Har72].

The model of k-pebble automaton is built by forcing the k marks (called pebbles) to follow a stack dis-
cipline: the i-th pebble can only (re)moved if it is the last one (i.e. if no (i+1)-th pebble is dropped).

5However, building a canonical object is easy when considering regular functions with origin semantics, see [Boj14].
6The latter are miles away from finite automata and regular languages.

Jump to contents

60 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

From this perspective, k-pebble automata can be seen as machines which execute nested (two-way) “for
loops”: intuitively, the i-th mark corresponds to the index of the i-th nested loop. This formalism was
first used to enrich tree-walking automata in [EH99]7. It was shown that over finite words, pebble auto-
mata recognize nomore than regular languages (the situation for trees languages is farmore complex, see
[BSSS06, EH06]). Pebble transducers were then introduced by adding an output mechanism to pebble
automata, and studied over trees as a model for XML-based query languages [MSV00]. Their restriction
to finite words was first considered in [EM02]. Recently, a regain of interest for pebble transducers over
finite words has followed from Bojańczyk’s extensive study [Boj18].

In this manuscript, we do not exactly follow the definitions of [EM02, Boj18] for pebble transducers,
but we present instead a definition based on nested 2DT (both definitions are equivalent, which is dis-
cussed in detail in Section 1.3.2). Let a 1-pebble transducer be simply a 2DT. A 2-pebble transducer consists
of a head 2DT which, when on any position i of its input word, can call auxiliary 2DT. The latter take
as input the original input with a pebble dropped on position i (formally, this position is marked). The
head 2DT then outputs the concatenation of all the outputs produced along its calls. We generalize this
idea in Definition 1.36, by defining a k-pebble transducer for k ⩾ 1 as a tree of height k.

Head two-way transducer
with inputA

Two-way transducer
with inputA×{0,1}

Two-way transducer
with inputA×{0,1}

Two-way transducer
with inputA×{0,1}2

Two-way transducer
with inputA×{0,1}2

Two-way transducer
with inputA×{0,1}2

Figure 1.35: Syntax of a 3-pebble transducer with input alphabetA.

We write a⟨t1⟩ · · · ⟨tn⟩ to denote a tree whose root node is labelled by a and whose rooted sub-
trees are t1, . . . , tn. Formally, a k-pebble transducer is a tree of height k whose nodes are labelled by
normalized 2DT. The root has input alphabetA, its childrenA× {0, 1}, etc.

Definition 1.36 (Pebble transducer)

Let k ⩾ 1 and T be a normalized 2DT with input alphabet A. We say that P is a k-pebble
transducer with input alphabetA, output alphabetB and head T if:

▶ either k = 1, P = T and it has output alphabetB;
▶ or k ⩾ 2, P is a tree T ⟨P1⟩ · · · ⟨Pp⟩ with p ⩾ 1 and:

▶ the subtrees P1, . . . ,Pp are (k−1)-pebble transducers with input alphabet
A×{0, 1}, output alphabetB, and respective heads T1, . . . ,Tp;

▶ T has output alphabet {T1, . . . ,Tp}.

We say that a 2DT T is a submachine of the pebble transducer P if T labels a node in the tree
which definesP . The tree structure of a 3-pebble transducer is depicted in Figure 1.35. Note that each
submachine has an input alphabet which depends on its height in the tree.

7Contrary to a persistent belief, the pebble automata introduced byGloberman andHarel in [GH96, Definition 4.1] do notmatch
the notion of pebble that is considered in the rest of the literature, e.g. in [EH99]. Indeed, they add additional constraints in the
spirit of the marbles of Chapter 4. The author thanks Nguyên for this observation.

Jump to contents

1.3. POLYREGULAR FUNCTIONS 61

Given u ∈ A∗ and 1 ⩽ i ⩽ |u|, we let u•i ∈ (A×{0, 1})∗ be itself where position i is marked, i.e.
(u[1], 0) · · · (u[i−1], 0)(u[i], 1)(u[i+1], 0) · · · (u[|u|], 0). If T is the head of the k-pebble transducer
P , we define the function computed by T within P , denoted JJT KK : A∗ → B∗, by induction:

▶ if k = 1, then JJT KK is JT K : A∗ → B∗ which follows the usual 2DT semantics;
▶ otherwise T has output alphabet T := {T1, . . . ,Tp} and the functions JJT1KK, . . . , JJT1KK have

been defined by induction. Let g : A∗ → (T × N)∗ be the function computed by T in origin
semantics. Given u ∈ A∗, if g(u) = (t1, i1) · · · (tn, in), then we let:

JJT KK(u) := JJt1KK(u•i1) · · · JJtnKK(u•in).

The function f : A∗ → B∗ computed by P is defined as JJT KK for its head T . We generalize the
notation JJT KK to any submachine T of P , by observing that it is the head of a subtree.

The nested behavior of a 3-pebble transducer is depicted in Figure 1.37.

Input word⊢ ⊣

Headmachine

Input word⊢ ⊣

Submachine called in •
pebble

Input word⊢ ⊣

Submachine called in •
pebblepebble

Figure 1.37: Behavior of a 3-pebble transducer that calls submachines.

Example 1.38 (Blind square and square)

▶ The function blind-square : A → A ⊎ {#} mapping u to (u#)|u| can be computed by a
2-pebble transducer of shape T ⟨T ′⟩. The head T calls T ′ on each position 1 ⩽ i ⩽ |u|
of u ∈ A∗, and JJT ′KK(u•i) = JT ′K(u•i) = u# (the underlining is not used by T ′).

▶ The function square : A→ A⊎{#}mapping u to (u•1)# · · · (u•|u|)# can be computed
by a 2-pebble transducer similar to that of blind-square (but now using the underlining).

Example 1.39 (Prefixes)

The function prefixes : A∗ → (A ⊎ {#})∗, u 7→ u[1:1]#u[1:2]# · · ·#u[1:|u|]# can be com-
puted by a 2-pebble transducer which makes a nested call in each position of the input.

In the following, we use the term pebble transducer to denote a k-pebble transducer for some k ⩾ 1.

Definition 1.40 (Polyregular functions)

The class of polyregular functions is the class of functions computed by pebble transducers.

Observe that for 1 ⩽ ℓ ⩽ k, an ℓ-pebble transducer can be simulated by a k-pebble transducer.

Jump to contents

62 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

1.3.2 Robustness and variants of the model

We describe here several variants of the k-pebble transducer model and explain informally why they
have the same expressiveness as k-pebble transducers for all k ⩾ 1.

1.3.2.1 Lookarounds. It is natural to askwhat happenswhen using normalized 2DTwith lookarounds
as the submachines of a k-pebble transducer. This enhancement does not increase expressiveness, since
lookarounds can be removed on 2DT while preserving the origin semantics (Theorem 1.30), thus pre-
serving the semantics of pebble transducers. Lookarounds will be useful in our proofs.

1.3.2.2 Non-total transducers. Another possibility is to allow the submachines to compute non-total
functions. This yields an alternative semantics of pebble transducers: the output is defined if and only if
the head has an accepting run and the calls to the submachines along this run are defined.

One can show by induction on k ⩾ 1 that a k-pebble transducer with non-total submachines com-
putes a function whose domain is a regular language (we use lookarounds in the induction step to detect
if a given call either will fail or accept and in this case produce an output). Thus one can build a “classical”
k-pebble transducer (i.e. which follows Definition 1.36) which computes an extension of the function
and produces a distinguished symbol if the input is not in the original domain.

1.3.2.3 Side effects. As a generalization of non-totality, one can consider that when a submachine is
called, it modifies the inner state of its parent (for instance, we can add a specific function which maps
the final states of the child to states of the parent). Once more, one can show that this model does not
provide additional expressiveness. The proof sketch would be similar to that of Section 1.3.2.2.

1.3.2.4 Output in the inner nodes. In our model, the submachines that label the inner nodes are
only allowed to call their children. One could allow them to directly produce portions of the output,
by adding B to their output alphabet. Such a feature can be simulated within the “classical” model, by
adding specific descendants nodes which produce the constant function u 7→ b for b ∈ B.

1.3.2.5 Undistinguished pebbles. In Figure 1.35, the leaf (red) submachines useA×{0, 1}2 as input
alphabet. Informally, this means that the submachines are able to distinguish the position of the first call
(first {0, 1}) from the positions of the second one (second {0, 1}). One can define an alternative model
where any submachine (except the head which has input alphabet A) has input alphabet A × {0, 1}
and where all the calling positions are only marked with 1 (even if there were two calls in the same
position). This means that submachine is only able to see, in a given position, if some call was done in
this position. Any “classical” k-pebble transducer can be transformed in a k-pebble transducer of this
shape, by encoding the lost information within the tree structure (using many more submachines).

1.3.2.6 Definitions from the literature. Finally, let us compare our pebble transducers to the histor-
ical definitions of [EM02, Boj18]. These papers define a k-pebble transducer as a single 2DTwhich drops
at most k pebbles on its input, while following a stack policy. It is easy to see that this model is equivalent
to ours, when allowing non-total transducers, side effects and outputs in the inner nodes. It follows from
Sections 1.3.2.2 to 1.3.2.4 that both models are equivalent (ours is syntactically more restrictive).

Jump to contents

1.3. POLYREGULAR FUNCTIONS 63

1.3.3 Basic properties of polyregular functions

First of all, let us claim that polyregular functions preserve regular languages by inverse image. As a
consequence, this result also holds for regular, rational and sequential functions. Proposition 1.41 is
stated explicitly in [Boj18, Theorem 1.7], however the key argument (that pebble automata recognize no
more than regular languages) was already known since [EH99].

Proposition 1.41 (Regular pre-images)

Let f : A∗ → B∗ be a polyregular function andL ⊆ B∗ be a regular language. Then the language
f−1(L) ⊆ A∗ is (effectively) regular.

Remark 1.42 (Direct images)

This result is completely false for direct images, even for regular functions. Indeed, it is easy to
build a 2DT which maps a word of shape (ab)n to anbn and produces# otherwise.

In practice, Proposition 1.41 enables to check whether a given polyregular function f fits a specific-
ation of shape u ∈ Lin ⇒ f(u) ∈ Lout for regular languages Lin ⊆ A∗ and Lout ⊆ B∗. Indeed,
checking this property is equivalent to checking that f−1(B∗ ∖ Lout) ∩ Lin = ∅.

1.3.3.1 Composition and decomposition. Closure under composition of polyregular functions was
first shown in [EM02, Theorem 2]. An optimal number of pebble layers for the composition (second part
of Theorem 1.43) was later given in [Eng15, Theorem 11], see also [Boj18, Theorem 2.6].

Theorem 1.43 (Composition of polyregular functions)

The class of polyregular functions is (effectively) closed under composition.

If f : A∗ → B∗ is computed by a k-pebble transducer and g : B∗ → C∗ by a ℓ-pebble transducer,
then one can build a (kℓ)-pebble transducer which computes g ◦ f .

Remark 1.44 (Optimality of composition)

Theorem 1.43 provides in general an optimal number of nested layers. Indeed, ifP ∈ N[X] (resp.
Q ∈ N[X]) is a polynomial with nonnegative integer coefficients, of degree k (resp. ℓ), then
1n 7→ 1P (n) (resp. 1n 7→ 1Q(n)) can be computed by a k- (resp. ℓ-) pebble transducer but their
composition 1n 7→ 1P (Q(n)) cannot be computed using only kℓ−1 nested layers.

As a “decomposition” result, we claim that the function square of Example 1.38 contains the seeds
of the expressiveness of polyregular functions with respect to regular functions. Theorem 1.45 follows
from [Boj18, Section 6]. It can be seen as an analogue of Theorem 1.32.

Theorem 1.45 (Decomposition of polyregular functions)

A function is polyregular if and only if can be written as a composition of regular functions and
square functions. The conversions are effective.

Jump to contents

64 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

1.3.3.2 Equivalent formalisms. It follows from [BKL19, Theorem 7] that polyregular functions are
exactly the functions computed by the logical model of monadic second-order interpretations (MSO in-
terpretations for short), which roughly extends the aforementioned MSO transductions. Informally,
a k-dimensional MSO interpretation is a collection of MSO formulas with 2k free first-order variables,
whose semantics describes how to encode of the output word as k-tuples of positions of the input word.
As such, it can be seen as a k-pebble transducer which moves its pebbles without a stack discipline, but
where the transitive closure of the moves is MSO definable (see the discussion that ends [BKL19, Sec-
tion 2.2]). However, for a fixed k ⩾ 2, k-pebble transducers compute a strict subclass of the functions
described by k-dimensional MSO interpretations (see [Boj22, Section 6]).

Several other equivalent formalisms have been introduced, among them an imperative programming
language named for transducers [Boj18, Section 3], a functional programming language in the spirit of
λ-calculus [Boj18, Section 4], and the functions definable in a specific type system [Boj23a].

1.3.3.3 Decision problems: class membership and equivalence. Recall that if f : A∗ → B∗ is
regular (i.e. computed by a 1-pebble transducer), then |f(u)| = O(|u|). In fact, this linear bound
completely characterizes regular functions among the polyregular ones, as stated in Theorem 1.46. This
result is claimed in [Boj22, Example 11] (see also [Boj23b, Theorem 2.3]). As pointed out in [Boj22,
footnote 6], this result is also a consequence of [EIM21, Corollary 45] which studies tree transducers.

Theorem 1.46 (Polyregular→ Regular)

A polyregular function f : A∗ → B∗ is regular if and only if |f(u)| = O(|u|). This property is
decidable. If it holds, one can build a 2DT which computes f .

A major open question for polyregular functions is decidability of their equivalence problem. To
our knowledge, the first mention of this question over finite words lies in [Eng15, Section 6]. We shall
present in Chapters 4 and 5 two subclasses of polyregular functions for which equivalence is decidable.

Open question 1.47 (Equivalence of polyregular functions)

Given two polyregular functions f, g : A∗ → B∗, is it decidable whether f = g?

1.3.4 Asymptotic growth and optimization

It is easy to observe that if f is computed by a k-pebble transducer, then |f(u)| = O(|u|k). Following
Theorem 1.46, one could conjecture that the least possible k ⩾ 1 such that a polyregular function f can
be computed by an k-pebble transducer is the least possible k ⩾ 1 such that |f(u)| = O(|u|k). This
result was claimed as the main theorem of a LICS 2020 paper by Lhote8. However, it was disproven one
year later by Bojańczyk in [Boj22, Theorem 6.3], after a discussion with Kiefer, Nguyên, Pradic and the
author of this manuscript. Hence, Lhote’s paper contains an unrecoverable error.

Theorem 1.48 (Quadratic growth can require 3 layers)

The function inner-squaring : u1# · · ·#un 7→ (u1#)n · · · (un#)n canbe computedby a3-pebble
transducer and is such that |inner-squaring(u)| = O(|u|2).
However, inner-squaring cannot be computed by a 2-pebble transducer.

Theorem 1.48 was also re-proven in [KNP23, Section 2] using elementary techniques.
8The paper is entitled “Pebble minimization of polyregular functions”. We chose not to add it in the bibliography, in order to

prevent a quick reader from going to this paper without knowing that it contains an unrecoverable error.

Jump to contents

1.3. POLYREGULAR FUNCTIONS 65

1.3.4.1 Minimalnestingdepthandasymptotic growtharenot related. As amitigation, it is natural
to ask whether there exists k ⩾ 3 such that any polyregular function f with |f(u)| = O(|u|2) can be
computed by a k-pebble transducer. Bojańczyk gives in [Boj23b, Section 3] a negative answer to this
question by studying the family of functions alternating-squarek for k ⩾ 2, that we describe in the next
paragraphs. Other counterexamples were given in [KNP23, Section 4] using different proof techniques,
adapted from the arguments of [EM02] which study the image languages of pebble transducers.

In the following,A denotes an alphabet. We write ⟨t1⟩ · · · ⟨tn⟩ to denote a finite tree whose root is
not labelled, and whose subtrees are t1, . . . , tn. We build by induction on k ⩾ 1 the set TreesAk :

▶ TreesA1 isA∗;
▶ for k ⩾ 2, TreesAk is the set of trees ⟨t1⟩ · · · ⟨tn⟩ where t1, . . . , tn ∈ TreesAk−1.

In other words, TreesAk is the set of complete trees of height k whose leaves are labelled by words of A∗

and whose inner nodes have no labels. Using the notation ⟨· · ·⟩, let us observe that TreesAk (for k fixed)
can be seen as a regular word language over the alphabetA ⊎ {⟨, ⟩}.

Example 1.49 (Alternating square)

The function alternating-square1 : TreesA2 → TreesA⊎{#}
3 takes as input a tree ⟨u1⟩⟨u2⟩ · · · ⟨un⟩

and outputs the tree ⟨⟨u1#u1⟩⟨u1#u2⟩ · · · ⟨u1#un⟩⟩ · · · ⟨⟨un#u1⟩⟨un#u2⟩ . . . ⟨un#un⟩⟩.
In other words, the output leaves are the pairs of the input leaves, ordered lexicographically. This
function can be computed by a 3-pebble transducer which uses its two first layers to mark which
pair are going to be produced, and the last layer to indeed output this pair.

More generally, we define the function alternating-squarek : TreesAk+1 → TreesA⊎{#}
2k+1 for k ⩾ 1.

It will output a tree whose leaves labels are tuples u#v for u, v ∈ A∗ leaves of the input tree, but the
ordering of these tuples is very specific. The function alternating-square2 is described by Algorithm 1.50.

Algorithm 1.50: Computing the alternating-square2 function
1 Function alternating-square2(u)
2 u ∈ A∗ represents a tree of height k+1
3 i0 := j0 := root node of u
4 for i1 ranging from left to right on the children of i0 do
5 Output ⟨
6 for j1 ranging from left to right on the children of j0 do
7 Output ⟨
8 for i2 ranging from left to right on the children of i1 do
9 Output ⟨
10 for j2 ranging from left to right on the children of j1 do
11 /* Now i2 and j2 are leaves which belong to A∗ */
12 Output ⟨i2#j2⟩
13 end
14 Output ⟩
15 end
16 Output ⟩
17 end
18 Output ⟩
19 end

For k ⩾ 1, the function alternating-squarek are is a mere generalization of Algorithm 1.50 which has
nested “for” loops over indices i1, j1, i2, j2, . . . , ik, jk . Note that |alternating-squarek(u)| = O(|u|2)

Jump to contents

66 CHAPTER 1. BACKGROUNDON TRANSDUCTIONS OF FINITEWORDS

since the output is a tree of bounded height and each pair of input leaves occurs exactly once. Further-
more, it can be computed by a (2k+1)-pebble transducer which uses its 2k first layers to simulate the
“for” loops, and the (2+1)-th layer to output themarked pair of leaves. However, 2k layers do not suffice,
as claimed in Theorem 1.51 which originates from [Boj23b, Section 3].

Theorem 1.51 (Quadratic growth can require k layers)

Let k ⩾ 1. The function alternating-squarek can be computed by a (2k+1)-pebble transducer and
is such that |alternating-squarek(u)| = O(|u|2).
However, alternating-squarek cannot be computed by a 2k-pebble transducer.

In other words, the minimal number ℓ of nested layers required to compute a polyregular function
does not only depend on its asymptotic growth, but also on the (word) combinatorics of its output. As a
consequence, we believe that optimizing the number of layers is currently a rather hard problem.

Open question 1.52 (Optimization of pebble transducers)

Given a polyregular function f : A∗ → B∗ and k ⩾ 2, is it decidable whether f can be computed
by some k-pebble transducer?

1.3.4.2 Positive results. In Chapters 3 and 4, we study three restricted variants of pebble transducers
(namely, blind pebble transducers, last pebble transducers and marble transducers) for which the min-
imal number k of nested layers required to compute a function f is exactly the least k such that |f(u)| =
O(|u|k). In Chapter 5, we shall see that the result also holds for pebble transducers whose output values
lie in N (i.e. unary output9) or in Z. We leverage these results to provide algorithms for minimizing the
number of nested layers used in such machines, i.e. an automated way to optimize string programs.

Interestingly, asymptotic growth is nevertheless connected to logics: a polyregular function f can
be described by a k-dimensional monadic second-order interpretation if and only if |f(u)| = O(|u|k)
(see [Boj22, Theorem 6.1] and [Boj23b, Theorem 2.3]). The proof techniques for this result are related to
those of Chapters 2, 3, 5 and 6 and rely on factorization forests10.

9In the case of unary outputs, pebble andmarble transducers turn out to be equivalent (cf. Chapter 5) and the result is therefore
a consequence of the aforementioned result for marble transducers.

10A different proof has been obtained by Lhote in an unpublished work. The techniques used are close to those of Chapter 4.

Jump to contents

Chapter 2

Frommonoid morphisms to
factorization forests

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Charles Baudelaire, « Correspondances », Les Fleurs du mal

This chapter can be understood as a toolbox for unravelling the behavior of two-way transducers,
whose study is at the heart of this manuscript. The notions and results presented here will be re-used in
particular in Chapters 3, 5, 6 and 9. A reader who is in hurry is invited to skip the current chapter, and
to use the hyperlinks for going back when needed to its definitions and its results.

In Section 2.1, we first present folklore results concerning the transitionmonoids of two-way trans-
ducers. We apply these tools in Section 2.2 to re-prove two known results for two-way transducers. The
latter should be considered as a warm-up towards the involved proof techniques for various decision
problems which are studied in Chapters 3, 5 and 6.

In Section 2.3, we recall the main properties of Simon’s celebrated factorization forests [Sim90].
Then, we describe how they can be used as a versatile tool for studying two-way transducers and pebble
transducers, following the techniques introduced in [Dou21, Dou22, Dou23].

2.1 Monoids and crossing sequences of two-way transducers

The goal of this section is to recall standard tools for studying the runs of two-way transducers. Given a
factor of the input, the basic idea is to describe all runs which move in a left-to-left, left-to-right, right-
to-right and right-to-left fashion on this factor, as depicted in Figure 2.1. In the rest of Section 2.1, we
fix a 2DT denoted T = (A,B,Q, q0, F, δ, λ). We let

←−
Q := {←−q | q ∈ Q} and

−→
Q := {−→q | q ∈ Q}.

2.1.1 Transition morphisms of two-way transducers

Our first goal is to build the following functions, which describe the behavior of T along words:

68 CHAPTER 2. FROMMONOIDMORPHISMS TO FACTORIZATION FORESTS

▶ the extended transition function δ∗ : (
−→
Q ⊎

←−
Q)× (A ⊎ {⊢,⊣})∗ ⇀

−→
Q ⊎

←−
Q ;

▶ and the extended output function λ∗ : (
−→
Q ⊎

←−
Q)× (A ⊎ {⊢,⊣})∗ ⇀ B∗ with same domain as δ.

Let u ∈ (A⊎ {⊢,⊣})∗ and q ∈ Q. Intuitively, δ(−→q , u) = −→p and λ(−→q , u) = αmeans that the longest
finite run labelled byuwhich starts in q in the leftmost position ofuwill eventually leaveu “on the right”
in state p, and the output produced along this run isα. This intuition is depicted in Figure 2.1. The ideas
behind this definition originate from [She59, Proof of Theorem 2] for two-way automata.

u ∈ (A ⊎ {⊢,⊣})+

δ∗(−→q1 , u) = −→p1 q1
p1

δ∗(←−q2 , u) = −→p2
q2

p2

δ∗(−→q3 , u) =←−p3
q3

p3

Figure 2.1: Extended transition function of a 2DT.

Formally, we let δ(_, ε) be the identity function and λ(_, ε) be the constant function v 7→ ε. For
q ∈ Q and u ∈ (A⊎{⊢,⊣})+, consider the longest run ofT labelled by uwhich begins in (q, 1), then:

▶ if this run is infinite (it loops inside u), then δ∗(−→q , u) := ⊥ (undefined);
▶ otherwise the run is finite and denoted maxi-run(−→q , u) := (q1, i1) −→ · · · −→ (qn, in). Then:

▶ if δ(qn, u[in]) = ⊥ (undefined, the machine gets blocked), then δ∗(−→q , u) := ⊥;
▶ if δ(qn, u[in]) = (p, ◁) (necessarily in = 1), then we let δ∗(−→q , u) :=←−p ;
▶ if δ(qn, u[in]) = (p, ▷) (necessarily in = |u|), then we let δ∗(−→q , u) := −→p .

If δ∗(−→q , u) ̸= ⊥, we let λ∗(−→q , u) be the concatenation λ(q1, u[i1]) · · ·λ(qn, u[in]). We build the
longest finite run maxi-run(←−q , u) in a similar way by starting in configuration (q, |u|) instead of (q, 1),
and the functions δ∗(←−q , u) and λ∗(←−q , u) accordingly.

Nowwe are ready to present the classical notion of transition morphism of a two-way transducer. The
reader is invited to consult e.g. [Car14, Théorème 3.84] or [DGK18, Section 2.5] for more details. On
purpose, we shall not define the transition morphism over (A⊎ {⊢,⊣})∗ but only overA∗. Indeed, the
end-markers ⊢ and ⊣ only play a “fixed” role that will be taken into account in Definition 2.5.

Proposition-Definition 2.2 (Transition morphism, transition monoid)

Let µ be the function mapping u ∈ A∗ to the function δ∗(_, u) :
−→
Q ⊎

←−
Q ⇀

−→
Q ⊎

←−
Q . The set

T := µ(A∗) can be equipped by an operation which makes µ : A∗ → T be a monoid morphism.
We say that µ (resp. T) is the transition morphism (resp. the transition monoid) of T .

Note that µ is the currying of δ∗ over its second argument (which is in A∗). We shall not explicitly
describe the monoid product ofT, but it intuitively describes how the runs ofT can be composed when
concatenating words (checking that it indeed defines a monoid is easy but tedious).

Jump to contents

2.1. MONOIDS AND CROSSING SEQUENCES OF TWO-WAY TRANSDUCERS 69

Remark 2.3 (Surjectivity)

The morphism µ : A∗ → T is a surjective by construction of T.

2.1.2 Crossing sequences and productions

From now on, we assume that T is normalized, thus it has an accepting run over any input ⊢u⊣ with
u ∈ A∗. Given a set of positions I ⊆ [1:|u|], we define the crossing sequence over I in u as the portions
of the accepting run of T over ⊢u⊣ whose positions are in I , as depicted in Figure 2.4.

Positions in I Positions in I u ∈ A∗⊢ ⊣
q0

qf

Figure 2.4: Crossing sequence over I of a normalized 2DT.

Definition 2.5 (Crossing sequence)

Let u ∈ A+, I ⊆ [1:|u|] and (q1, i1) −→ (q2, i2) −→ · · · −→ (qn, in) be the unique accepting run
of T labelled by ⊢u⊣. The crossing sequence of T over I in u is defined as:

crossuT (I) := (qj , ij)1⩽j⩽n such that ij∈I .

We are ready to define the production along I , which corresponds to the output produced along the
corresponding crossing sequence. Given a word α ∈ B∗, we let parikh(α) be its Parikh image, that is the
multiset of the letters of v. For instance parikh(abac) = {{a, a, b, c}}. Considering the Parikh image is
useful when dealing only with the size of the output, which was our goal in Section 1.3.4.

Definition 2.6 (Production of a two-way transducer)

Let u ∈ A+, I ⊆ [1:|u|] and crossuT (I) = (q1, i1), (q2, i2), . . . , (qn, in). The production of T
over I in u is defined as produT (I) := parikh(λ(q1, u[i1]) · · ·λ(qn, u[in])).

Given a multisetM, we let |M|s denote the number of occurrences of the element s inM. We claim
that productions enjoy an additive property, which can easily be checked by looking at Figure 2.4. This
property will be especially useful when slicing an input word along a factorization forest in Section 2.3.

Claim 2.7 (Productions are additive)

Let u ∈ A+ and I, J ⊆ [1:|u|] be disjoint. Then produT (I ⊎ J) = produT (I) ⊎ produT (J).

In particular, if f : A∗ → B∗ is the function computed by T and I1, . . . , In is a partition of
[1:|u|], then parikh(f(u)) = produT (I1) ⊎ · · · ⊎ produT (In).

Jump to contents

70 CHAPTER 2. FROMMONOIDMORPHISMS TO FACTORIZATION FORESTS

Finally, we focus on the case when I is an interval (i.e. I = u[i:j] for some 1 ⩽ i ⩽ j ⩽ |u|) through
the notion ofµ-context. We also establish a first relation between transitionmorphism and productions.

Definition 2.8 (Word-context, µ-context)

Given a triple (v0, u, v1) ∈ A∗×A+×A∗, we say it describes a word-context written v0 ⌊u⌋v1.
Let µ : A∗ → M be a monoid morphism. Given a triple (m0, u,m1) ∈ M×A+×M, we say it
describes a µ-context which is writtenm0 ⌊u⌋m1

Let us overload the definition of our production operator. If v0 ⌊u⌋v1 is a word-context, we let
crossT (v0 ⌊u⌋v1) := crossv0uv1

T ([|v0|+1:|v0u|]) and prodT (v0 ⌊u⌋v1) := prodv0uv1T ([|v0|+1:|v0u|]).
Now, we show that the production over the word-context v0 ⌊u⌋v1 only depends on the abstraction
µ(v0)⌊u⌋µ(v1) when µ : A∗ → T is the transition monoid of T .

Proposition-Definition 2.9 (Production in a context)

Let µ : A∗ → T be the transition morphism of T andm0 ⌊u⌋m1 be a µ-context. For all word-
context v0 ⌊u⌋v1 such thatµ(v0) = m0 andµ(v1) = m1, the value prodT (v0 ⌊u⌋v1) is the same.

We define prodT (m0 ⌊u⌋m1) as this value.

Proof idea. By Claim 2.7, we only have to show that for all a ∈ A and word-contexts v0 ⌊a⌋v1,
v′0 ⌊a⌋v′1withµ(v0) = µ(v′0) andµ(v1) = µ(v′1), we have prodT (v0 ⌊a⌋v1) = prodT (v0 ⌊a⌋v1).
We show by induction on j ⩾ 1 that if (q1, |v0+1|), . . . , (qj , |v0+1|) ⊑ crossT (v0 ⌊a⌋v1) (recall
that⊑ is used to denote a prefix), then (q1, |v′0+1|), . . . , (qj , |v′0+1|) ⊑ crossT (v′0 ⌊a⌋v′1). The
base case follows since q1 = δ∗(q0, v0) = δ∗(q0, v

′
0) by definition of the transition morphism and

since (q1, |v0+1|) is the first visit in |v0+1| in v0av1. The induction step is similar, depending on
whether the transition δ(qj , a)moves right or left. Finally, we apply λ. ◀

Observe that prodT (m0 ⌊u⌋m1) is well-defined for allm0,m1 ∈ T. Indeed, since µ : A∗ → T is
surjective (see Remark 2.3), one can find a word-context such that µ(v0 ⌊u⌋v1) = m0 ⌊u⌋m1.

2.2 Applications: pumping lemmas for two-way transducers

As a ludic interlude between the rather arid Sections 2.1 and 2.3, we apply our tools for deciding if f(A∗)
is finite when f : A∗ → B∗ is a regular function. We leverage the technique to provide a well-known
“pumping lemma” for 2DT. Our notions may seem to be over-engeenering for these simple applications,
but they provide a warm-up towards the difficult proofs of the next chapters.

2.2.1 Deciding if a regular function has finite image

We first introduce the notion of µ-K-iterator, which roughly consists in a µ-context whose word can be
duplicated without breaking its structure. This notion will be generalized in Section 5.3.3 when dealing
with counting transducers, which are roughly pebble transducers with commutative output.

Jump to contents

2.2. APPLICATIONS: PUMPING LEMMAS FOR TWO-WAY TRANSDUCERS 71

Definition 2.10 (Iterator)

Let µ : A∗ → M be a monoid morphism andK ⩾ 0. We say that a µ-contextm0e⌊u⌋em1 is a
µ-K-iterator ifm0, e,m1 ∈M, u ∈ A+, |u| ⩽ K and e = µ(u) is an idempotent1.

As their name suggest, µ-K-iterators can be “iterated” in rather a smooth way.

Claim 2.11 (Pumping iterators)

Let f : A∗ → B∗ be computed by a normalized 2DT T with transition monoid µ : A∗ → T. Let
m0e⌊u⌋em1 be a µ-K-iterator and let v0 ⌊u⌋v1 be such that µ(v0) = m0e and µ(v1) = em1.
There existsN ⩾ 0 such that for allX ⩾ 0, |f(v0uXv1)| = |prodT (m0e⌊u⌋em1)|X +N .

Proof. Immediate by Claim 2.7 and Proposition-Definition 2.9. ◀

In order to use Claim 2.11, one needs to find µ-K-iterators within arbitrary (large enough) input
words. This is the purpose of Claim 2.12, which is a first step towards Section 2.3. This result easily
follows from Ramsey’s theorem, see e.g. [Jec21] for a generalization and precise bounds.

Claim 2.12 (Towards factorization forests)

One can build a computableR : N→ N such that the following holds if µ : A∗ →M is a morph-
ism into a finite monoid. For all w ∈ A∗ such that |w| ⩾ R(|M|), there exist w0, w1 ∈ A∗ and
t0, u, t1 ∈ A+ such thatw = w0t0ut1w1 and µ(t0) = µ(u) = µ(t1) is idempotent.

Using Claims 2.11 and 2.12, one can obtain a decidable characterization (in terms of productions)
of the 2DT which compute a function whose image is finite. The same methodology will be applied (in
a more complex setting) for solving decision problems in Chapters 3, 5 and 6.

Proposition 2.13 (Regular functions with finite image)

Let f : A∗ → B∗ be computed by a normalized 2DT with transition monoid µ : A∗ → T. Then
f(A∗) is finite if and only if |prodT (m0e⌊u⌋em1)| = 0 for all µ-R(|T|)-iteratorm0e⌊u⌋em1.

As a consequence, one can decide if a regular function has finite image.

Proof idea. The “if” direction follows from Claim 2.11 and the fact that µ is surjective. For the
converse, we use Claims 2.11 and 2.12 to show that, within long enough words, factors can be
removed without changing the output size. The property is decidable since there is only a finite
number of µ-R(|T|)-iterators, and their productions can effectively be determined. ◀

2.2.2 A pumping lemma for regular functions

In Claim 2.11, we have somehow described a “commutative” pumping lemma for 2DT, since we only
considered the length of the output. Several results of this shape will be stated and used in Part II. In the
current section, we explain what happens when really considering the word output.

The first step is to get with Lemma 2.15 a fine-grained understanding of the idempotents in the
transition monoid. This classical result roughly corresponds to [Boj18, Sublemma 6.8.2]. A variant over
infinite words and under weaker hypotheses will be discussed in Lemma 9.48.

1Recall that an element e ∈ M is said to be idempotent if e · e = e.

Jump to contents

72 CHAPTER 2. FROMMONOIDMORPHISMS TO FACTORIZATION FORESTS

u1 u2 u3 u4 u5 u6
q p

p1
p2

p3
p4 p

p1
p2

p3
p4 p

p1
p2

p3
p4 p

p1
p2

p3
p4 p

p1
p2

p3
p4

Figure 2.14: Shape of a run along a block of idempotents factors.

Lemma 2.15 (Runs in idempotent blocks)

Let T = (A,B,Q, q0, F, δ, λ) be a 2DT with transition monoid µ : A∗ → T. Let e ∈ T be
an idempotent and u = u1 · · ·un be such that ui ∈ A+ and e = µ(ui) for all 1 ⩽ i ⩽ n. If
δ∗(−→q , u1) = −→p , then maxi-run(−→q , u) has shape maxi-run(−→q , u1)→ ρ2 → · · · → ρn where:

(1) for all 2 ⩽ i ⩽ n, ρi starts in the first configuration of ρ which visits ui;
(2) for all 2 ⩽ i ⩽ n, ρi begins with a configuration of shape (p, _) (i.e. it starts in p);
(3) for all 2 ⩽ i ⩽ n, ρi only visits the positions of ui and ui−1 (it cannot go back to ui−2).

Proof. We have δ∗(−→q , u1) = −→p , thus δ∗(−→q , u1 · · ·ui−1) =
−→p for all 2 ⩽ i ⩽ n. This means

that the factor ui is visited by maxi-run(−→q , u), and furthermore that this visit starts in state p,
giving Items (1) and (2) by defining ρi accordingly. For Item (3), let i ⩾ 3 (for i = 2 the result is
obvious), we show that ρi only visits ui and ui−1. First, observe that this run does not visit ui+1

by construction of ρi+1. Second, let us consider the state r seen in the last visit of the first position
of ui−1 in ρi−1. Since µ(ui−1ui) = µ(ui−1), we have δ∗(−→r , ui−1ui) = δ∗(−→r , ui−1) =

−→p (the
last equality follows from Item (2), because it describes the beginning of ρi). This means that when
starting from r in the first position of ui−1, T will execute the end of ρi−1, then ρi, and it will
eventually leave ui−1ui “by the right”. Hence the run ρi stays in ui−1ui, until it goes to ui+1 in
state p (and this is by construction the beginning of ρi+1). ◀

The shape of maxi-run(−→q , u) from Lemma 2.15 is depicted in Figure 2.14. Observe that it must
cross the border between each ui and ui+1 a fixed number of times, and that the states visited during
this crossing must always be the same (because it meets the same idempotent everywhere).

Jump to contents

2.3. FACTORIZATION FORESTS 73

As a consequence of Lemma 2.15, we obtain an abstract pumping lemma for regular functions. The
next result is stated e.g. in [Roz86, Théorème 1]2. A variant of this statement will be used in Proposi-
tion 3.14 for showing a separation result between classes of functions computed by nested 2DT.

Proposition 2.16 (Pumping lemma for regular functions)

Let f : A∗ → B∗ be a regular function. There exists N ⩾ 0 such that the following holds for
all w ∈ A∗ with |w| ⩾ N . There exist v0, v1 ∈ A∗, u ∈ A+, n ⩾ 0, α0, . . . , αn ∈ B∗,
β1, . . . , βn ∈ B+ such thatw = v0uv1 and f(v0uX+1v1) = α0β

X
1 α1 · · ·βX

n αn for allX ⩾ 0.

Proof. Let µ : A∗ → T be the monoid morphism of a 2DTω T = (A,B,Q, q0, F, δ, λ) which
computes f . By Claim 2.12 one can factorize any long enough wordw ∈ A∗ under the shapew =
w0t0ut1w1 where t0, u, t1 ∈ A+ are such that µ(t0) = µ(u) = µ(t1) is idempotent. Consider
the word t0uX+1t1 for X ⩾ 0 and let q ∈ Q be such that δ∗(−→q , t) has shape −→p . By applying
Lemma 2.15, one can factor maxi-run(−→q , t0uX+1t1) as maxi-run(−→q , t0) → ρ2 → · · · → ρX+2

where ρ2 visits the first u and t0, ρi for 3 ⩽ i ⩽ X+3 visits the (i−1)-th and the (i−2)-th u,
and ρX+3 visits t1 and the last u. For all 3 ⩽ i ⩽ X+3, the runs ρi are the same (up to position
shifting) since they move on the same input uu, starting in the middle in state p. Hence they have
the same output β ∈ B∗. Furthermore this value does not depend onX . All in all, the output along
maxi-run(−→q , t0uX+1t1) has shapeα0β

Xα1 for someα0, α1 ∈ B∗. The result follows by showing
that the accepting run of T on input ⊢w0t0ut1w1⊣ can be decomposed as the concatenation of a
bounded number of runs of the previous shape. ◀

2.3 Factorization forests

In Section 2.2, we saw that words whose image is an idempotent of the transition monoid are useful to
duplicate or remove pieces of an accepting run. We used Ramsey’s theorem to show that idempotents
occur in long enough words. In this section, we first recall Simon’s factorization forest theorem [Sim90,
Theorem 6.1] which goes one step further than Ramsey. Roughly, given a word, this result builds a tree
structure which factorizes it while exhibiting idempotents “everywhere”. Various proofs of this theorem
have been given since Simon’s, and it yielded several applications such as characterizations of subclasses
of regular languages [PW97, BP09, KA10] or string matching algorithms [Boj09, Section 2].

Secondly, we describe themachinery introduced in [Dou21, Dou22, Dou23] in order to iterate idem-
potent portions of words using factorization forests. These technical results will be used as basic tools
in the proofs of Chapters 3, 5 and 6 to deal with the asymptotic growth of polyregular functions.

2.3.1 Simon’s theorem

If µ : A∗ → M is a morphism into a finite monoid and u ∈ A∗, a µ-factorization forest (also called
µ-forest in the following) of u is an unranked tree structure described in Definition 2.17. Recall that
⟨t1⟩ · · · ⟨tn⟩ denotes a finite tree whose root is not labelled, and whose subtrees are t1, . . . , tn.

Definition 2.17 (Factorization forest)

Let µ : A∗ →M be a monoid morphism and u ∈ A∗. We say thatF is a µ-forest of u if:

2More recently, this theorem was re-proven as the main result of [Smi14]. See also [Bas17, Section 3.3].

Jump to contents

74 CHAPTER 2. FROMMONOIDMORPHISMS TO FACTORIZATION FORESTS

▶ either u = a ∈ A andF = a;
▶ or F = ⟨F1⟩ · · · ⟨Fn⟩, u = u1 · · ·un and for all 1 ⩽ i ⩽ n, Fi is a µ-forest of ui ∈ A+.

Furthermore, if n ⩾ 3 then µ(u) = µ(u1) = · · · = µ(un) is an idempotent ofM.

Remark 2.18 (Pruning a factorization forest)

If ⟨F1⟩ · · · ⟨Fn⟩ is a µ-forest and I ⊆ [1:n], then ⟨Fi⟩i∈I is also a µ-forest.

We use the standard notions of node, root, leaf , child, sibling, descendant, ancestor (defined in a non-
strict way: a node is itself one of its ancestors/descendants). We define the height of a tree by induction:
a leaf has height 1 and the height of ⟨t1⟩ · · · ⟨tn⟩ is 1+ the maximum of the heights of t1, . . . , tn.

Given a morphism µ : A∗ →M, d ⩾ 1 and u ∈ A+, we let Forestsdµ(u) be the set of all µ-forests of
u ∈ A+ of height at most d. By removing some variables in this definition, we let:

▶ Forestsµ(u) :=
⋃

d⩾1 Forestsdµ(u);
▶ Forestsdµ :=

⋃
u∈A+ Forestsdµ(u);

▶ Forestsµ :=
⋃

d⩾1

⋃
u∈A+ Forestsdµ(u).

A treeF ∈ Forestsµ can be seen as a word over the alphabetA⊎{⟨, ⟩} (this observation directly follows
from Definition 2.17). IfM is finite, it is easy to see that Forestsdµ is a regular language (beware that it is
not the case of Forestsµ). We let the function wordµ : Forestsµ → A+ be the morphism which removes
the letters in {⟨, ⟩}, i.e. mappingF ∈ Forestsµ(u) to u ∈ A+. We define worddµ : Forestsdµ → A+ as the
restriction of wordµ to Forestsdµ for d ⩾ 1.

We denote by NodesF the set of nodes of F . In order to simplify the statements, we identify a node
t ∈ NodesF with the subtree rooted in this node. Thus NodesF can also be seen as the set of subtrees of
F , and F ∈ NodesF . We say that a node is idempotent if is has at least 3 children (recall that it this case,
applying µ ◦ wordµ to any of its rooted subtrees yields the same idempotent value inM).

Example 2.19 (Factorization forest)

LetM := ({−1, 1, 0},×) and µ : M∗ → M be the product. We depict in Figure 2.20 a µ-forest
F of the word (−1)(−1)0(−1)00000000 ∈M∗. Double lines denote idempotent nodes.

−1 −1 0 −1 0 0 0 0 0 0 0 0

Figure 2.20: A factorization forestF ∈ Forestsµ((−1)(−1)0(−1)00000000).

Now, we claim that given a fixed morphism µ : A∗ → M into a finite monoid, there exist d ⩾ 0
and a function forestµ : A+ → Forestsdµ which is a pseudo-inverse ofwordµ. In particular, Theorem 2.21
shows the existence a µ-forest of bounded height of all u ∈ A+, which is the original result of [Sim90]
(with d = 9|M|, our d = 3|M|was obtained later in [Kuf08]). Once this existence is known, it is easy to
show that a rational pseudo-inverse of wordµ can be built, see e.g. [Boj09, Lemma 3].

Jump to contents

2.3. FACTORIZATION FORESTS 75

Theorem 2.21 (Rational Simon)

Given a morphism µ : A∗ → M into a finite monoid, one can build a rational function denoted
forestµ : A+ → Forests3|M|

µ such that word3|M|
µ ◦ forestµ is the identity function overA+.

Remark 2.22 (Sequential Simon)

We shall meet in Section 9.6.1 a variant of factorization forests for which forestµ can be computed
by a sequential function. However, this computation by a simpler model is done at the cost of
weakening the structural conditions which define idempotent nodes.

2.3.2 Iterable nodes and skeletons

In this subsection, µ : A∗ → M denotes a fixed morphism into a finite monoid. Our goal is to describe
how a µ-factorization forests enables to partition a word u ∈ A+, so that subwords can be iterated
without changing the global behavior of µ. We follow the definitions introduced in [Dou21, Dou22];
similar ideas are presented in [Boj23b, Section 2] under the formalism of tree grammars.

First, we define iterable nodes as themiddle children of idempotent nodes. Intuitively, such nodes can
be removed or iterated while preserving the µ-forest structure.

Definition 2.23 (Iterable nodes)

Let u ∈ A+ andF ∈ Forestsµ(u), we define the set ItersF of iterable nodes ofF as follows:

▶ ifF = a ∈ A then ItersF := ∅;
▶ otherwise ifF = ⟨F1⟩ · · · ⟨Fn⟩, then:

ItersF := {Fi | 2 ⩽ i ⩽ n−1} ∪
⋃

1⩽i⩽n

ItersFi
.

The skeleton of a node is built by selecting inductively its “leftmost” and “rightmost” descendants.

Definition 2.24 (Skeleton, frontier)

Let u ∈ A+,F ∈ Forestsµ(u) and t ∈ NodesF . We define the skeleton of t, denoted SkelF (t), by:

▶ if t = a ∈ A is a leaf, then SkelF (t) := {t};
▶ otherwise if t = ⟨F1⟩ · · · ⟨Fn⟩, then SkelF (t) := {t} ∪ SkelF (F1) ∪ SkelF (Fn).

The frontier of t is the set FrF (t) ⊆ [1:|u|] containing the positions of uwhich belong to SkelF (t)
(when seen as leaves of the µ-forestF over u).

Example 2.25 (Iterable nodes, skeleton, frontier)

Theµ-forest of Figure 2.20 is represented again in Figure 2.26. Its iterable nodes are depictedwith
blue circles. The skeleton of the root node is depicted with red circles.

It is easy to observe if d is fixed, then for all F ∈ Forestsdµ(u) and t ∈ F , the size of SkelF (t) or
FrF (t) are bounded independently from F and t. Indeed, in this case a skeleton can be seen as a binary
tree (thus it has bounded branching) of height at most d (thus it has bounded height).

Jump to contents

76 CHAPTER 2. FROMMONOIDMORPHISMS TO FACTORIZATION FORESTS

−1 −1 0 −1 0 0 0 0 0 0 0 0

Figure 2.26: Iterable nodes and skeleton of the root for the µ-forest from Figure 2.20.

Now, we claim that the skeletons of the iterable nodes and of the root partition a given forest. As a
consequence, we obtain a partition of the positions of the word conform to this forest. The proof of the
Claim 2.27 is immediate by induction. Also note that a skeleton or a frontier cannot be empty.

Claim 2.27 (Partition of skeletons)

Let u ∈ A+ and F ∈ Forestsµ(u). The set of skeletons {SkelF (t) | t ∈ ItersF ∪ {F}} is a
partition of NodesF . The set of frontiers {FrF (t) | t ∈ ItersF ∪ {F}} is a partition of [1:|u|].

2.3.3 Node dependence

Since it partitions the nodes in a top-down fashion, Claim 2.27 enables to associate an iterable node (or
the root) to any position of the word. This way, define the notion of origin of a leaf in a forest.

Definition 2.28 (Origin of a leaf)

Let u ∈ A+ and F ∈ Forestsµ(u). Given a position 1 ⩽ i ⩽ |u|, we define the origin of i in F ,
denoted originF (i) as the unique node t ∈ ItersF ∪ {F} such that i ∈ FrF (t).

Thanks to origins, we roughly forget the positions of the word and focus on the nodes which belong
to ItersF ∪{F}. When considering a k-pebble transducer, we will study the relative position of k-tuples
of such nodes. Intuitively, we say that two iterable nodes are independent if they are “far enough” in the
tree, and thus can be iterated independently and without altering the µ-forest structure.

Definition 2.29 (Node observation)

Let F ∈ Forestsµ and t, t′ ∈ NodesF . We say that t ∈ NodesF observes t′ ∈ NodesF if either t′ is
an ancestor of t, or t′ is the immediate right or left sibling of an ancestor of t.

Nodes that observe •

• observes these nodes

Figure 2.30: Nodes that observe • and that • observes.

Jump to contents

2.3. FACTORIZATION FORESTS 77

The intuition behind the notion of observation (which is not symmetrical) is depicted in Figure 2.30.
Since the nodes which a given t observes are more or less its ancestors, the number of such nodes only
depends on the height of the forest, as explained in Claim 2.31. Note the converse does not hold: the
number of nodes which observe tmay not be bounded (since they are children).

Claim 2.31 (Bounded observation)

Let d ⩾ 1,F ∈ Forestsdµ and t ∈ NodesF , then t observes at most 3d nodes ofF .

Now, we introduce the symmetrized version of observation, named dependence.

Definition 2.32 (Node dependence)

LetF ∈ Forestsµ and t, t′ ∈ NodesF . We say that t and t′ are dependent if either t observes t′, or t′
observes t. Otherwise they are said to be independent.

Finally, we justify that independent tuples of iterable nodes enable to factorize the word in a way
which makes µ-K-iterators occur. We define the relation ≼ over ItersF ∪ {F} by t′≼t′ if and only if
min(FrF (t)) ⩽ min(FrF (t′)), which defines a total ordering thanks to Claim 2.27.

Lemma 2.33 (Pairwise independent nodes)

Let u ∈ A+, F ∈ Forestsµ(u) and t1≼ · · ·≼tk ∈ ItersF be pairwise independent. There exist
words v0, . . . , vk ∈ A∗, u′1, . . . , u′k , u1, . . . , uk , u′′1 , . . . , u′′k ∈ A+, such that:

▶ u = v0(u
′
1u1u

′′
1)v1 · · · vk−1(u

′
kuku

′′
k)vk;

▶ for all 1 ⩽ j ⩽ k, ej := µ(u′j) = µ(uj) = µ(u′′j) is an idempotent ofM;
▶ for all 1 ⩽ j ⩽ k, the positions of factor uj in u are [min(FrF (tj)):max(FrF (tj))]. In

particular, this means that uj = wordµ(tj).

A formal proof of Lemma 2.33 is probably not the most convincing way to show its correctness.
Instead of such a proof, we encourage the reader to have a look at Figure 2.34 which depicts a forest in
the case k = 2. Since the iterable nodes t1 and t2 are independent, their right and left siblings exist and
the factors of u below these nodes are disjoint. Furthermore, the image of these factors under µmust be
independent. The result follows by considering these factors for the u′j , uj and u′′j .

t1

t2

v0 v1 v2u′1 u1 u′′1 u′2 u2 u′′2

Figure 2.34: Construction of Lemma 2.33 for two independent nodes t1≼t2.

This result will also be used to show Lemma 5.48 in Chapter 5, which provides a more precise state-
ment concerning the productions of a model called k-counting transducers (the latter can roughly be
understood as k-pebble transducers whose output is commutative).

Jump to contents

78 CHAPTER 2. FROMMONOIDMORPHISMS TO FACTORIZATION FORESTS

Jump to contents

Chapter 3

Making pebbles invisible: blind and
last pebble transducers

FAUST, impérieusement
Je veux.

MÉPHISTOPHÈLÉS, s’incline en signe de
soumission et conclut philosophiquement

Je crains que ce ne soit le dernier de vos vœux.

Lili Boulanger, E. Adenis, Faust et Hélène

We have observed in Section 1.3.4 that for k ⩾ 1, the functions computed by k-pebble transducers
do not coincide with the polyregular functions f such that |f(u)| = O(|u|k). Furthermore, it is open
whether one can decide if a polyregular function can be computed by a k-pebble transducer for a given
k ⩾ 2. In other words, it is unknown whether pebble transducers can automatically be optimized by
removing nested layers. This goal this chapter is to study subclasses of polyregular functions for which
the relation between minimal number of nested layers and asymptotic growth holds. These classes will
furthermore describe robust and meaningful variants of polyregular functions.

POLYBLIND
Blind pebble transducers

...

Blind 3-pebble transducers

Blind 2-pebble transducers

REGULAR
Two-way transducers

⋃
k⩾1O(nk)

O(n3)

O(n2)

O(n)

u 7→ (u#)|u|
2

blind-square : u 7→ (u#)|u|

Figure 3.1: Classes of functions computed by blind pebble transducers.

80 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

For this purpose, we give in Section 3.1 two pre-existing restrictions of k-pebble transducers:

▶ blind k-pebble transducers, which are k-pebble transducers where a submachine cannot see the
pebbles marking the nested calls done by its ancestors. They compute a robust class of functions
called polyblind functions, whose properties are close to polyregular functions;

▶ last k-pebble transducers, which are k-pebble transducers where a submachine can only see the
pebble dropped by its parent, but no the full stack of the former pebbles.

The classes of functions computed by blind pebble transducers are depicted in Figure 5.1.

In Sections 3.2 and 3.3, we show that a function f computed by a blind k-pebble transducer (resp.
a last k-pebble transducer) can be computed by a blind ℓ-pebble transducer (resp. a last ℓ-pebble trans-
ducer) for a given 1 ⩽ ℓ ⩽ k if and only if |f(u)| = O(|u|ℓ). This property is decidable and we provide
an effective construction. Thus blind pebble transducers and last pebble transducers can be optimized.
Our proofs make a heavy use of the factorization forests techniques which were presented in Chapter 2.

Finally, we claim in Section 3.4 that the result for last pebble transducers is tight, in the sense that the
connection between number of layers and asymptotic growth does not hold for more powerful models.

The contributions presented in this chapter are based on the main theorems of [Dou23].

3.1 Blind and last pebble transducers

Let us describe two restrictions of pebble transducers. In Section 3.1.1, we present the blind pebble
transducer model, which was first introduced in [NNP21, Definition 5.1] under the name “comparison-
free pebble transducer”. It was later studied in [Dou22, Dou23] with the “blind” terminology that we use
in this manuscript. In Section 3.1.2, we move to last pebble transducers, which were first introduced in
[EHS07, Section 2] over finite trees under the name “invisible pebble transducers” (the main difference
is that their model allows unbounded nesting, see Section 4.5).

3.1.1 Blind pebble transducers

Blind pebble transducers can be described by the oxymoron “pebble transducers without pebbles”. Intu-
itively, they are “blind” because a submachine cannot see the calling positions. In terms of nested “for”
loops, they can be seen as programs where a loop index cannot be used inside nested loops. Recall that
a⟨t1⟩ · · · ⟨tn⟩ denotes a tree whose root node is labelled by a and whose rooted subtrees are t1, . . . , tn.
Formally, a blind k-pebble transducer is a tree of height k whose nodes are labelled by normalized 2DT.

Definition 3.2 (Blind pebble transducer)

Let k ⩾ 1 and T be a normalized 2DT with input alphabet A. We say that B is a blind k-pebble
transducer with input alphabetA, output alphabetB and head T if:

▶ either k = 1, B = T and it has output alphabetB;
▶ or k ⩾ 2, B is a tree T ⟨B1⟩ · · · ⟨Bp⟩ with p ⩾ 1 and:

▶ the subtreesB1, . . . ,Bp are blind (k−1)-pebble transducers with input alphabetA,
output alphabetB, and respective heads T1, . . . ,Tp;

▶ T has output alphabet {T1, . . . ,Tp}.

IfT is the head of the blind k-pebble transducerB, we define the function computed byT within
B, denoted JJT KK : A∗ → B∗, by induction (in a similar way to pebble transducers):

▶ if k = 1, then JJT KK := JT K : A∗ → B∗ follows the usual 2DT semantics;

Jump to contents

3.1. BLIND AND LAST PEBBLE TRANSDUCERS 81

▶ otherwise T has output alphabet T := {T1, . . . ,Tp} and the functions JJT1KK, . . . , JJT1KK have
been defined by induction. Let g : A∗ → (T × N)∗ be the function computed by T in origin
semantics1. Given u ∈ A∗, if g(u) = (t1, i1) · · · (tn, in), then we let:

JJT KK(u) := JJt1KK(u) · · · JJtnKK(u).

The function f : A∗ → B∗ computed byB is defined as JJT KK for its headT . We say that a 2DT T is a
submachine of the pebble transducer B if T labels a node in the tree structure of B. We generalize the
notation JJT KK to any submachine T of B, by observing that it is the head of a subtree.

The behavior of a blind pebble transducer is depicted in Figure 3.3 (to be comparedwith Figure 1.37).

Input word⊢ ⊣

Headmachine

Input word⊢ ⊣

Submachine called in •

Input word⊢ ⊣

Submachine called in •

Figure 3.3: Behavior of a blind 3-pebble transducer.

Example 3.4 (Blind square)

The function blind-square : A∗ → A∗ ⊎ {#}, u 7→ (u#)|u| is computed in Example 1.38 by a
2-pebble transducer which is in fact a blind 2-pebble transducer.

We use the term blind pebble transducer to denote a blind k-pebble transducer for some k ⩾ 1. Note
that 1-pebble transducers, blind 1-pebble transducers and 2DT are the same.

Definition 3.5 (Polyblind functions)

The class of polyblind functions is the class of functions computed by blind pebble transducers.

3.1.1.1 Robustness and variants of the model. One can define variants of the blind k-pebble trans-
ducer model, in the spirit of the variants for k-pebble transducers described in Section 1.3.2 (that is,
allowing submachines with lookarounds, or non-total submachines, or side effects, or output in the in-
ner nodes). Such features do not modify the expressiveness of blind k-pebble transducers for k ⩾ 1.

The comparison-free k-pebble transducers introduced in [NNP21, Definition 5.1] coincide with our
blind k-pebble transducers from Definition 3.2, when allowing non-total transducers, side effects and
outputs in the inner nodes. Therefore both models have the same expressive power.

1Using origin semantics is not useful here, since no marks will be dropped. However, we have kept g in the definition in order
to be consistent with the semantics of pebble transducers.

Jump to contents

82 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

3.1.1.2 Basic properties. Now, we claim that polyblind functions are closed under composition, and
we state an analogue of Theorem 1.45 which “decomposes” polyregular functions. Both results are a
consequence of [NNP21, Theorem 6.1]. In view of these two properties, we claim the class of polyblind
functions could also be considered as a robust and natural generalization of regular functions. How-
ever, there is no logical model known to capture this class (see e.g. [KNP23, Section 3] for a discussion),
contrary to the aforementioned MSO interpretations which describe polyregular functions.

Theorem 3.6 (Composition of polyblind functions)

The class of polyblind functions is (effectively) closed under composition.

If f : A∗ → B∗ is computed by a blind k-pebble transducer and g : B∗ → C∗ by a blind ℓ-pebble
transducer, then one can build a blind (kℓ)-pebble transducer that computes g ◦ f .

Furthermore, it is easy to observe that Theorem 3.6 is optimal in the sense of Remark 1.44.

Theorem 3.7 (Decomposition of polyblind functions)

A function is polyblind if and only if can be written as a composition of regular functions and
blind-square functions. The conversions are effective.

We shall see in Proposition 3.14 that blind pebble transducers are strictly less expressive than pebble
transducers. Furthermore, the decision problem from polyregular to polyblind will be shown decidable
in Chapter 6, when the outputs of the machines are inN (unary) or in Z.

3.1.2 Last pebble transducers

Last pebble transducers can be seen as pebble transducers where only the “last” pebble dropped can be seen
by a submachine (see Figure 3.9). IfA is an alphabet, we letA := {a | a ∈ A} be a disjoint underlined
copy of A. In order to simplify the notations and since at most one letter will be distinguished, we
identify the setA× {0, 1} withA ⊎A. In particular, u•i denotes the word u[1:i−1]u[i]u[i+1:|u|].

Definition 3.8 (Last pebble transducer)

Let k ⩾ 1 andT be a normalized 2DTwith input alphabetA⊎A. We say thatL is a last k-pebble
transducer with input alphabetA, output alphabetB and head T if:

▶ either k = 1, L = T and it has output alphabetB;
▶ or k ⩾ 2, L is a tree T ⟨L1⟩ · · · ⟨Lp⟩ with p ⩾ 1 and:

▶ the subtrees L1, . . . ,Lp are last (k−1)-pebble transducers with input alphabet A,
output alphabetB, and respective heads T1, . . . ,Tp;

▶ T has output alphabet {T1, . . . ,Tp}.

If T is the head of the last k-pebble transducer B, we define the function computed by T within
B, denoted JJT KK : (A ⊎A)∗ → B∗, by induction (in a similar way to pebble transducers):

▶ if k = 1, then JJT KK := JT K : (A ⊎A)∗ → B∗ follows the usual 2DT semantics;
▶ otherwise T has output alphabet T := {T1, . . . ,Tp} and the functions JJT1KK, . . . , JJT1KK have

been defined by induction. Let g : A∗ → (T × N)∗ be the function computed by T in origin
semantics. Given u ∈ A∗, if g(u) = (t1, i1) · · · (tn, in), then we let:

JJT KK(u) := JJt1KK(ν(u)•i1) · · · JJtnKK(ν(u)•in).

Jump to contents

3.1. BLIND AND LAST PEBBLE TRANSDUCERS 83

where ν : (A ⊎A)∗ → A∗ is the morphism which erases the underlining.

The function f : A∗ → B∗ computed byL is defined as JJT KK|A∗ for its headT (the restriction toA∗

is due to the fact that underlinings are only usedwithin nested calls). We say that a 2DT T is a submachine
of the pebble transducer L if T labels a node in the tree structure of L . We generalize the notation
JJT KK to any submachine T of L , by observing that it is the head of a subtree.

The behavior of a last pebble transducer is depicted in Figure 3.9 (to be compared with Figure 3.3).

Input word⊢ ⊣

Headmachine

Input word⊢ ⊣

Submachine called in •
pebble

Input word⊢ ⊣

Submachine called in •
pebble

Figure 3.9: Behavior of a last 3-pebble transducer.

Example 3.10 (Square)

The function square : A→ A ⊎ {#} from Example 1.38 which maps u to (u•1)# · · · (u•|u|)#
can be computed by a last 2-pebble transducer.

It is easy to observe that last 2-pebble transducers and 2-pebble transducers are the same. We use the
term last pebble transducer to denote a last k-pebble transducer for some k ⩾ 1. The respective expressive
power of pebble transducers and last pebble transducers is discussed in Proposition 3.15.

3.1.2.1 Robustness and variants of the model. One can define variants of the last k-pebble trans-
ducer model, in the spirit of the variants for k-pebble transducers described in Section 1.3.2 (that is,
allowing submachines with lookarounds, or non-total submachines, or side effects, or output in the in-
ner nodes). Such features do not modify the expressiveness of last k-pebble transducers for k ⩾ 1.

We shall see that the class of functions computed by last pebble transducers is not closed under
composition. However, it is still closer under composition by a regular function. The next result is easy
by leveraging standard proofs techniques, e.g. those of Theorems 1.31, 1.43 and 3.6.

Proposition 3.11 (Composition with regular functions)

For all k ⩾ 1, the class of functions computed by last k-pebble transducers is (effectively) closed
under pre- and post-composition by regular functions.

Jump to contents

84 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

3.1.3 Optimization theorems and consequences

Themain goal of Chapter 3 is to show how blind k-pebble transducers and last k-pebble transducers can
be optimized by minimizing the number k ⩾ 1 of layers needed to compute a function. These results
are stated in Theorems 3.12 and 3.13 which both originate from [Dou23, Theorem 3.5]. The connection
between number of layers and asymptotic growth is the key result to get decidability.

Theorem 3.12 (Optimization of blind pebble transducers)

Let 1 ⩽ ℓ ⩽ k and f : A∗ → B∗ be computed by a blind k-pebble transducer. Then f can
be computed by a blind ℓ-pebble transducer if and only if |f(u)| = O(|u|ℓ). This property is
decidable. If it holds, one can build a blind ℓ-pebble transducer which computes f .

Proof. A detailed proof is presented in Section 3.2. It relies on the tools of Chapter 2. ◀

Theorem 3.13 (Optimization of last pebble transducers)

Let 1 ⩽ ℓ ⩽ k and f : A∗ → B∗ be computed by a last k-pebble transducer. Then f can
be computed by a blind ℓ-pebble transducer if and only if |f(u)| = O(|u|ℓ). This property is
decidable. If it holds, one can build a last ℓ-pebble transducer which computes f .

Proof. A detailed proof is presented in Section 3.3. It relies on the tools of Chapter 2 and its sketch
is very similar to that of Section 3.2, however it is far more involved. ◀

Let us show that Theorems 3.12 and 3.13 provide versatile tools for exploring the expressive power
of blind pebble transducers and last pebble transducers. We first observe that polyblind functions are a
strict subclass of polyregular functions. The next result originates from [NNP21, Theorem 8.3].

Proposition 3.14 (Separation between pebble and blind pebble transducers)

The functions inner-squaring, square and prefixes are not polyblind.

Proof. If inner-squaring was computable by a blind pebble transducer, it would be computable by
a blind 2-pebble transducer by Theorem 3.12, thus by a 2-pebble transducer, a contradiction with
Theorem 1.48. Now if square was polyblind, the classes of polyregular and polyblind functions
would be equal by Theorems 1.45 and 3.6, so inner-squaring would be polyblind.

We propose a direct combinatorial proof for prefixes : u 7→ u[1:1]#u[1:2]# · · ·u[1:|u|]#.
Assume that this function is polyblind, then by Theorem 3.12 it is computed by a blind 2-pebble
transducer T ⟨T1⟩ · · · ⟨Tp⟩. By leveraging the proof techniques of Proposition 2.16 to a finite
collection of transducers, one can find words v0, v1 ∈ A+, u ∈ A+ such that:
▶ JT K(v0uX+1v1) = α0(β1)

Xα1 · · · (βn)Xαn with n ⩾ 0, α0, . . . , αn ∈ {T1, . . . ,Tp}∗
and β1, . . . , βn ∈ {T1, . . . ,Tp}+. Since |prefixes(v0uXv1)| = θ(X2), we have n ⩾ 1;

▶ for all 1 ⩽ j ⩽ p, JTjK(v0uX+1v1) = α0,j(β1,j)
Xα1,j · · · (βℓj ,j)Xαℓj ,j with ℓj ⩾ 0,

α1,j , . . . , αℓj ,j ∈ (A ⊎#)∗ and β1,j , . . . , βℓj ,j ∈ (A ⊎#)+.
By putting everything together and relabelling the words, we obtain:

JJT KK(v0uX+1v1) = α0(δ0,1γ
X
1,1 · · · γXm1,1δm1,1)

Xα1 · · · (δ0,nγX1,n · · · γXmn,nδmn,n)
Xαn

with for all 1 ⩽ j ⩽ n,mj ⩾ 0 δ0,j , . . . , δmj ,j ∈ (A ⊎#)∗ and γ0,j , . . . , γmj ,j ∈ (A ⊎#)+.
Since two maximal #-free factors of prefixes(v0(u)Xv1) cannot have the same size, we obtain

Jump to contents

3.2. SOLVING THE OPTIMIZATION PROBLEM FOR BLIND TRANSDUCERS 85

γi,j ∈ A+ for all 1 ⩽ j ⩽ n and 1 ⩽ i ⩽ mj . For the same reason, for all 1 ⩽ j ⩽ n
there is at most one 1 ⩽ i ⩽ mj such that# occurs in δi,j . Since |prefixes(v0uX+1v1)| = θ(X2),
there exists 1 ⩽ j ⩽ n such that mj ⩾ 1. There exists one (unique) 0 ⩽ i ⩽ mj such that
occurs in δi,j , because otherwise prefixes(v0(u)X+1v1)would contain a#-free factor of quad-
ratic size inX . Now, any repetition (δ0,jγ

X
1,j · · · γXmj ,j

δmj ,j)
X contains several maximal#-free

factors of the same size, which yields a contradiction with the definition of prefixes. ◀

More generally, there is a strict hierarchy between blind pebbles, last pebbles and pebbles.

Proposition 3.15 (Separation between pebble, last pebble and blind pebble transducers)

Pebble transducers are strictly more expressive than last pebble transducers, which are strictly
more expressive than blind pebble transducers. In more detail, the function inner-squaring can be
computed by a 3-pebble transducer but not by a last pebble transducer; and the functions square
and prefixes can be computed by a last 2-pebble transducer but not by a blind pebble transducer.

Proof. If inner-squaring was computable by a last pebble transducer, it would be computable by a
last 2-pebble transducer byTheorem3.13, a contradictionwithTheorem1.48. The result for square
and prefixes follows from Examples 1.38 and 1.39 and Proposition 3.14. ◀

Finally, we claim that the class of functions computed by last pebble transducers is not closed under
composition. Intuitively, this is due to the fact that composition would require to see two pebbles.

Proposition 3.16 (Lack of composition)

The class of functions computed by last pebble transducers is not closed under composition.

Proof. Since this class contains regular functions and square functions, its closure under compos-
ition would imply by Theorem 1.45 that it equals polyregular functions. ◀

3.2 Solving the optimization problem for blind transducers

This section is devoted to showing Theorem 3.12 (it will follow from Theorem 3.20), by following the
proof of [Dou23, Section 5] which relies on factorization forests. The connection between asymptotic
growth and number of nested layers for blind pebble transducers was also shown using different tech-
niques in [NNP21, Theorem 7.1], but they neither study effectiveness nor decidability.

3.2.1 Pumpable transducers and asymptotic growth

Let us first give a necessary condition, named pumpability, for a blind k-pebble transducer to compute
a function f such that |f(u)| = O(|u|k−1). If it does not hold, the function cannot be computed by
a blind (k−1)-pebble transducer. Let the transition morphism of a blind pebble transducer B be the
cartesian product of the transition morphisms of all the submachines ofB. Observe that it makes sense
to consider the production of a submachineT in a µ-context when µ is the transition morphism ofB.

Definition 3.17 is probably harsh at a first reading, but the notion of pumpability is inspired from
Lemma 2.15 for 2DT. Here, the idea is to build a pattern which describes how several µ-contexts for
submachines can call each other, in a way which can be iterated. Observe that being pumpable can be
decided by ranging over tuples of transition monoid elements and letters.

Jump to contents

86 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

Definition 3.17 (Pumpable blind transducer)

LetB be a blind k-pebble transducer whose transition morphism is µ : A∗ → T. We say that the
transducer B is pumpable if there exist:

▶ submachines T1, . . . ,Tk of B, such that T1 is the head of B;
▶ m0, . . . ,mk, ℓ1, . . . , ℓk, r1, . . . , rk ∈ T;
▶ a1, . . . , ak ∈ A such that for all 1 ⩽ j ⩽ k, ej := ℓjµ(aj)rj ∈ T is idempotent;
▶ a permutation σ : [1:k]→ [1:k];

such that ifMj
i := miei+1mi+1 · · · ejmj for all 0 ⩽ i ⩽ j ⩽ k, and if we define the following

µ-context for all 1 ⩽ j ⩽ k:

Cj :=Mσ(j)−1
0 eσ(j)ℓσ(j) ⌊aσ(j)⌋rσ(j)eσ(j)Mk

σ(j)

then for all 1 ⩽ j ⩽ k−1, |prodTj
(Cj)|Tj+1

̸= 0 and |prodTk
(Ck)| ≠ 0.

The behavior of a pumpable blind 2-pebble transducer is depicted in Figure 3.18 over a well-chosen
input: it has a factor in which the head T1 calls a submachine T2, and a factor in which T2 produces a
non-empty output. Furthermore both factors can be iterated while preserving the shape of the runs.

a1 a2⊢ ⊣
m0 e1 ℓ1 ⌊a1⌋ r1 e1 m1 e2 ℓ2 µ(a2) r2 e2 m2

a1 a2⊢ ⊣
m0 e1 ℓ1 µ(a1) r1 e1 m1 e2 ℓ2 ⌊a2⌋ r2 e2 m2

T1 head

T2 λ ̸= ε

T2 ∈ λ

Figure 3.18: Pumpability in a blind 2-pebble transducer.

We first claim that pumpability is a sufficient condition for having asymptotic growth in θ(nk).

Claim 3.19 (Pumpability⇒Growth)

Let f : A∗ → B∗ be computed by a pumpable blind k-pebble transducer, then there exist
v0, . . . , vk ∈ A∗, u1, . . . , uk ∈ A+, such that |f(v0uX1 · · ·uXk vk)| = θ(Xk).

Proof. We use the notations of Definition 3.17. For 1 ⩽ j ⩽ k, let wj , w
′
j ∈ A∗ be such that

µ(wj) = ℓj and µ(w′
j) = rj , v0, . . . , vk ∈ A∗ be such that µ(vj) = mj for all 1 ⩽ j ⩽ k and

uj := wjajw
′
j , for 1 ⩽ j ⩽ k. We show that |JJT1KK(v0uX1 · · ·uXk vk)| = θ(Xk).

From the properties of productionswe get for allX ⩾ 2, |JTkK(v0uX1 · · ·uXk vk)| ⩾ (X−2)×
|prodTk

(Ck)| ⩾ X−2. Similarily, |JTjK(v0uX1 · · ·uXk vk)|Tj+1 ⩾ (X−2)× |prodTj
(Cj)|Tj+1 ⩾

X−2 for 1 ⩽ j ⩽ k−1 andX ⩾ 2. Therefore |JJT1KK(v0uX1 · · ·uXk vk)| ⩾ (X−2)k . ◀

Now we are ready to state a refinement of Theorem 3.12.

Jump to contents

3.2. SOLVING THE OPTIMIZATION PROBLEM FOR BLIND TRANSDUCERS 87

Theorem 3.20 (Removing one blind pebble layer)

Let k ⩾ 2 and f : A∗ → B∗ be a function computed by a blind k-pebble transducer B. The
following conditions are equivalent:

(1) |f(u)| = O(|u|k−1);
(2) B is not pumpable;
(3) f can be computed by a blind (k−1)-pebble transducer.

Furthermore, this property is decidable and the construction is effective.

Proof. Item (3) ⇒ Item (1) in Theorem 3.20 is obvious and Item (1) ⇒ Item (2) is Claim 3.19.
Furthermore, we have observed above that pumpability is decidable. Item (2)⇒ Item (3) is shown
(in an effective fashion) in Section 3.2.2. It is the main body of this proof. ◀

3.2.2 Removing a nested layer in a non-pumpable transducer

In Section 3.2.2, we show Item (2)⇒ Item (3) in Theorem 3.20. Let us fix k ⩾ 2 andB a blind k-pebble
transducer which is not pumpable and computes a function f : A∗ → B∗. Our goal is to build a blind
(k−1)-pebble transducer computing f . Let µ : A∗ → T be the transition morphism of B, our new
machine will compute the composition of:

▶ the rational function from Theorem 2.21, forestµ : A∗ → Forests3|T|µ ;
▶ the function f ◦ word3|T|µ : Forests3|T|µ → B∗, computed by a blind (k−1)-pebble transducer B.

We shall allow its submachines to have lookarounds, since as explained in Section 3.1.1.1 this
feature does not modify the expressiveness of the models.

Once these steps are achieved, it follows from Theorem 3.6 that the composition f = f ◦word3|T|µ ◦
forestµ can effectively be computed by a blind (k−1)-pebble transducer.

3.2.2.1 Construction of B. The rest of this section is devoted to building B and justifying the cor-
rectness of the construction. We first describe its submachines, which are of two kinds:

▶ for each submachineT ofB,B has a submachine old-T . The latter behaves asT does, with the
difference that it takes a µ-forest as input and that it makes calls to the old-T ′ instead of the T ′.
The behavior of old-T is detailed in Algorithm 3.21 whenT is not a leaf ofB. The case of a leaf
is obtained by modifying Line 7 to produce exactly the output (in2 B) of T ;

▶ for each submachineT ofB which is not a leaf,B has a submachine new-T . The goal of new-T
is to simulateT as old-T does, while inlining the nested calls within its own run (i.e. removing a
nesting layer) in two cases: if the call is done in a position which depends on the root of the forest,
or if its children are leaves of B. This behavior is detailed in Algorithm 3.21.

Finally, the transducer B is obtained by defining new-T as its head, where T is the head of B.
Furthermore, we remove the submachines old-T or new-T which are never called. It remains to justify
that the construction is correct and indeed defines a blind (k−1)-pebble transducer. The key property
of B is that it only make nested calls in positions whose origins are iterable nodes (i.e. not the root).

3.2.2.2 B is correct. We first justify that B computes the function f ◦ word3|T|µ . If old-T is used in
B, it is easy to see that JJold-T KK = JJT KK ◦ word3|T|µ . In a similar fashion, if new-T is used in B, then
JJnew-T KK = JJT KK ◦ word3|T|µ . The result follows by considering the head.

2Recall that since T is normalized, the output along a transition is either a letter or ε.

Jump to contents

88 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

Algorithm 3.21: Submachines of the blind (k−1)-pebble transducer B

1 Submachine old-T (F)
2 /* Suppose that T has shape (A,C,Q, q0, F, δ, λ). */

3 u := word3|T|µ (F) /* Input word of T . */
4 (q1, i1) −→ · · · −→ (qn, in) := accepting n-run of T labelled by u
5 for 1 ⩽ j ⩽ n do
6 if T ′ := λ(qj , u[ij]) ̸= ε then
7 Call submachine old-T ′(F)
8 end
9 end

10 Submachine new-T (F)
11 /* Suppose that T has shape (A,C,Q, q0, F, δ, λ) */

12 u := word3|T|µ (F) /* Input word of T */
13 (q1, i1) −→ · · · −→ (qn, in) := accepting n-run of T labelled by u
14 for 1 ⩽ j ⩽ n do
15 if T ′ := λ(qj , u[ij]) ̸= ε then
16 if ij ∈ FrF (F) then
17 /* The set FrF (F) has bounded size. */
18 Inline the code of old-T ′(F)
19 else if T ′ is a leaf of B then
20 /* The output of T ′ is bounded by Lemma 3.23. */
21 Inline the code of old-T ′(F)
22 else
23 Call submachine new-T ′(F)
24 end
25 end
26 end

3.2.2.3 B has k−1 nested layers. The next step towards showing that B is a blind (k−1)-pebble
transducer is to show that it has exactlyk−1 (andnotk) nested layers. Formally, we say that a submachine
of a blind pebble transducer has height h ⩾ 1 if it is the head of a subtree of height h. Our goal is to show
that the head of B has height k−1, which is equivalent to saying that B has k−1 nested layers.

We first show by induction that ifT has height h inB, then old-T (if used) has height h inB (this
proof is easy). Second, we show by induction on 2 ⩽ h ⩽ k that ifT has height h inB, then new-T (if
used) has height h−1 in B. Indeed, the base case h = 2 is justified by Line 21 in Algorithm 3.21 (there
are no nested calls since we inline the code of all the children). For h > 2 the machine new-T either
inlines the code of old-T ′ (which has height h−1) or makes a nested call to new-T ′ (which has height
h−2 by induction hypothesis), thus it has height h−1.

3.2.2.4 Each submachine of B is a two-way transducer (with lookaheads). Each old-T can be
implemented by a 2DT which moves on the leaves of F while following variable 1 ⩽ ij ⩽ |u|. It
remains to justify that each new-T which occurs in B can also be implemented in a similar fashion.

Since F ∈ Forests3|T|µ , the size of FrF (F) is bounded, and one can easily build a lookaround which
enables to detect whether ij ∈ FrF (F) holds, in the sense of Claim 3.22.

Jump to contents

3.2. SOLVING THE OPTIMIZATION PROBLEM FOR BLIND TRANSDUCERS 89

Claim 3.22 (Frontiers can be detected)

One can build regular languages R,L ⊆ (A ⊎ {⟨, ⟩})∗ such that the following conditions are
equivalent for allF ∈ Forests3|T|µ (seen as a word) and 1 ⩽ i ⩽ |F|:

▶ F [1:i−1] ∈ L andF [i+1:|F|] ∈ R;
▶ F [i] encodes a leaf ofF which belongs to FrF (F).

It remains to explain how the “Inline the code” instructions of Lines 18 and 21 are implemented:

▶ if ij ∈ FrF (F), then new-T inlines the code of old-T ′ by executing on the leaves ofF the same
moves and outputs as T ′ does on input u. Once this simulation is ended, new-T has to go back
to leaf ij . This can be done by storing in the state that ij was the ℓ-th leaf of FrF (F) (ℓ being
bounded), and using the lookaround of Claim 3.22 to recover this position;

▶ otherwiseT ′ is a leaf ofB, that is a 2DT with output alphabetB. In this case, new-T inlines the
code of old-T ′ byproducing JT ′K(u)withoutmoving. Indeed, we claim that JT ′K(u) is bounded
independently from u and F ∈ Forests3|T|µ (thus some lookaround can be used to determine the
exact output among a bounded number of possibilities). More precisely, we claim that for all
i′ ̸∈ FrF (F), |produT ′(i′)| = 0. Indeed, if |produT ′(i′)| ̸= 0 for such an i′ ̸∈ FrF (F) when
reaching Line 21 of Algorithm 3.21 in an execution ofB, it is easy to observe that the conditions
of Lemma 3.23 hold, which yields a contradiction. This lemma is the key argument of this proof:
observe that it relies on the non-pumpability of B.

Lemma 3.23 (Key lemma for removing one last pebble layer)

Letu ∈ A+ andF ∈ Forestsµ(u). Assume that there exist a sequenceT1, . . . ,Tk of submachines
of B and a sequence of positions 1 ⩽ i1, . . . , ik ⩽ |u| such that:

▶ T1 is the head of B;
▶ for all 1 ⩽ j ⩽ k−1, |produTj

(ij)|Tj+1
̸= 0;

▶ |produTk
(ik)| ≠ 0;

▶ for all 1 ⩽ j ⩽ k, ij ̸∈ FrF (F).
Then B is pumpable.

Proof. Assume that the conditions of Lemma 3.23 hold and let tj := originF (ij) for all 1 ⩽ j ⩽ k.
Observe that for all 1 ⩽ j ⩽ k we have tj ∈ ItersF . If the tj are pairwise independent, then the
pumpability ofB follows fromLemma 2.33 (intuitively, the factorswordµ(tj) ofu are pairwise “far
enough” and furthermore their images under µ are idempotent).

Now,we suppose that the tj are not necessarily pairwise independent. Let us showhow tomake
the number of dependent couples of (tj1 , tj2) decrease strictly, while preserving the properties of
Lemma 3.23. Repeating this process will enable us to make all the nodes pairwise independent.

Assume that tℓ1 observes tℓ2 for some 1 ⩽ ℓ1 ̸= ℓ2 ⩽ k. To simplify the proof, we assume that
tℓ2 is an ancestor of tℓ1 (the case of the immediate sibling of an ancestor is similar). LetF ′ beF in
which the subtree tℓ2 has been copied 3 times (since tℓ2 is an iterable node, thenF ′ still a µ-forest),
see Figure 3.24. We define for 1 ⩽ j ⩽ k the nodes t′j ∈ NodesF ′ as follows:
▶ if j = ℓ2, then we let t′j be (the root of) the third copy of tj ;
▶ else if tj was a descendant of tℓ2 (including tℓ1 but not tℓ2), thenwe let t′j be the corresponding

node in the first copy of tℓ2 (see Figure 3.24b);
▶ else if tj is in the rest ofF , we let t′j be the corresponding node in the rest ofF ′.
Observe that now, t′ℓ1 and t

′
ℓ2
are not dependent. Furthermore if tj1 and tj2 were independent

in F for 1 ⩽ j1, j2 ⩽ k, then t′j1 and t′j2 are also independent. Let u′ := wordµ(F ′), we define

Jump to contents

90 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

tℓ2

tℓ1

(a) Original µ-forestF .

t′ℓ2

t′ℓ1

(b) Modified µ-forestF ′.

Figure 3.24: Duplicating a subtree inF so that t′ℓ1 and t
′
ℓ2
become independent.

1 ⩽ i′1, . . . , i
′
k ⩽ |u′| as the positions which correspond to the former 1 ⩽ i1, . . . , ik ⩽ |u| in

the frontiers of t′1, . . . , t′k in the new µ-forest F ′. Since we have only duplicated an iterable node,
observe that µ(u[1:ij−1])⌊u[ij]⌋µ(u[ij+1:|u|]) = µ(u[1:i′j−1])⌊u′[i′j]⌋µ(u′[i′j+1:|u′|]) for
all 1 ⩽ j ⩽ k. Thus produTj

(ij) = produ
′

Tj
(i′j) and the conditions of Lemma 3.23 still hold. ◀

Thus B is a blind (k−1)-pebble transducer which computes f ◦ word3|T|µ . The result follows.

3.3 Solving the optimization problem for last transducers

This section is devoted to showing Theorem 3.13 (it will follow from Theorem 3.28, which is an adapt-
ation of Theorem 3.20). The proof scheme is similar to that of Section 3.2 for blind pebble transducers,
while being far more involved. We follow the presentation of [Dou23, Section 6].

3.3.1 Pumpable transducers and aymptotic growth

We first introduce a notion of pumpability for last pebble transducers, whose intuition is depicted in
Figure 3.26. The formal definition is more cumbersome than for blind pebble transducers, since we
need to keep track of the fact that the calling position is marked. Let the transition morphism of a last
pebble transducerL be the cartesian product of the transition morphisms of all the submachines ofL ,
thus it is a surjective mapping of type (A ⊎A)∗ → T where T is the (finite) transition monoid.

Definition 3.25 (Pumpable last transducer)

Let L be a last k-pebble transducer whose transition morphism is µ : (A ⊎ A)∗ → T. We say
that the transducer L is pumpable if there exist:

▶ submachines T1, . . . ,Tk of L , such that T1 is the head of L ;
▶ m0, . . . ,mk, ℓ1, . . . , ℓk, r1, . . . , rk ∈ µ(A∗) ⊆ T;
▶ a1, . . . , ak ∈ A such that for all 1 ⩽ j ⩽ k, ej := ℓjµ(aj)rj is idempotent;
▶ a permutation σ : [1:k]→ [1:k];

such that if we letMj
i := miei+1mi+1 · · · ejmj for all 0 ⩽ i ⩽ j ⩽ k, and if we define the

following µ-context:

C1 :=Mσ(1)−1
0 eσ(1)ℓσ(1) ⌊aσ(1)⌋rσ(1)eσ(1)Mk

σ(1)

Jump to contents

3.3. SOLVING THE OPTIMIZATION PROBLEM FOR LAST TRANSDUCERS 91

and for all 1 ⩽ j ⩽ k−1 the µ-context:

Cj+1 :=Mσ(j)−1
0 eσ(j)ℓσ(j)µ(aσ(j))rσ(j)eσ(j)M

σ(j+1)−1
σ(j)

eσ(j+1)ℓσ(j+1) ⌊aσ(j+1)⌋rσ(j+1)eσ(j+1)Mk
σ(j+1) if σ(j) < σ(j + 1);

Cj+1 :=Mσ(j)−1
0 eσ(j+1)ℓσ(j+1) ⌊aσ(j+1)⌋rσ(j+1)eσ(j+1)

Mσ(j)−1
σ(j+1)eσ(j)ℓσ(j)µ(aσ(j))rσ(j)eσ(j)M

k
σ(j) otherwise;

then for all 1 ⩽ j ⩽ k−1, |prodTj
(Cj)|Tj+1 ̸= 0, and |prodTk

(Ck)| ≠ 0.

As for blind pebble transducers, observe that pumpability for last pebble transducers can be decided
by ranging over tuples of transition monoid elements and letters.

a1 a2⊢ ⊣
m0 e1 ℓ1 ⌊a1⌋ r1 e1 m1 e2 ℓ2 µ(a2) r2 e2 m2

a1 a2⊢ ⊣
m0 e1 ℓ1 µ(a1) r1 e1 m1 e2 ℓ2 ⌊a2⌋ r2 e2 m2

T1 head

T2 λ ̸= ε

T2 ∈ λ

Figure 3.26: Pumpability in a last 2-pebble transducer.

Now, we provide an analogue of Claim 3.19, showing that our notion of pumpability is correct.

Claim 3.27 (Pumpability⇒Growth)

Let f : A∗ → B∗ be computed by a pumpable last k-pebble transducer, then there exist
v0, . . . , vk ∈ A∗, u1, . . . , uk ∈ A+, such that |f(v0uX1 · · ·uXk vk)| = θ(Xk).

Proof. The proof is similar to that of Claim 3.19. We use the notations of Definition 3.25. For
1 ⩽ j ⩽ k, let wj , w

′
j ∈ A∗ be such that µ(wj) = ℓj and µ(w′

j) = rj , v0, . . . , vk ∈ A∗ be such
that µ(vj) = mj for all 1 ⩽ j ⩽ k, uj := wjajw

′
j and uj := wjajw

′
j for 1 ⩽ j ⩽ k.

To simply the notations, we assume that σ : [1:k] → [1:k] is the identity function. We first
observe for all X ⩾ 2, that |JT1K(v0uX1 · · ·uXk vk)|T2

⩾ (X−2) × prodT1
(C1) ⩾ X−2. In a

similar fashion, for all 2 ⩽ j ⩽ k−1,X ⩾ 2 and 1 ⩽ Y ⩽ X−1, we have:

|JTjK(v0 · · · vj−1(u
Y
j uju

X−Y−1
j)vju

X
j+1 · · ·uXk vk)|Tj+1

⩾ X−2.

Observe that the use ofuYj uju
X−Y−1
j means that the equationholds independently from the factor

uj which is marked, i.e. the factor in which the parent call was done. In a similar way, we get:

|JTkK(v0 · · · vk−2(u
Y
k−1uk−1u

X−Y−1
k−1)vk−1u

X
k vk)| ⩾ X−2.

Using the semantics of last k-pebble transducers, we conclude that |JJT1KK(v0uX1 · · ·uXk vk)| ⩾
(X−2)k for allX ⩾ 2, and the result follows. ◀

Jump to contents

92 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

Now we state an analogue of Theorem 3.20, which precises Theorem 3.13.

Theorem 3.28 (Removing one last pebble layer)

Let k ⩾ 2 and f : A∗ → B∗ be a function computed by a last k-pebble transducer L . The
following conditions are equivalent:

(1) |f(u)| = O(|u|k−1);
(2) B is not pumpable;
(3) f can be computed by a blind (k−1)-pebble transducer.

Furthermore, this property is decidable and the construction is effective

Proof. Item (3)⇒ Item (1) is obvious and Item (1)⇒ Item (2) is Claim 3.27. Furthermore, we have
observed above that pumpability is decidable. Item (2)⇒ Item (3) is shown (in an effective fashion)
in Section 3.3.2. It is the main body of this proof. ◀

3.3.2 Removing a nested layer in a non-pumpable transducer

In Section 3.3.2, we show Item (2)⇒ Item (3) in Theorem 3.28. We follow the same proof sketch as in
Section 3.2.2. Let us fix k ⩾ 2 andL a last k-pebble transducer which is not pumpable and computes a
function f : A∗ → B∗. Our goal is to build a last (k−1)-pebble transducer for f . Letµ : (A⊎A)∗ → T
be the transition morphism of L and φ := µ|A∗ be its restriction to A∗. Our new machine will be
obtained as a composition (thanks to Proposition 3.11) of:

▶ the function forestφ : A∗ → Forests3|T|φ ;
▶ the function f ◦ word3|T|φ : Forests3|T|φ → B∗, computed by a blind (k−1)-pebble transducer L .

We allow the submachines to have lookarounds, as explained in Section 3.1.2.1.

We strongly advise the reader to read Section 3.2.2 as a warm-up before the current section. First,
let us fix useful notations. Given F ∈ Forests3|T|φ , u = word3|T|φ (F) and 1 ⩽ i ⩽ |u|, we denote
by F■i ∈ (A ⊎ A ⊎ {⟨, ⟩})∗ the forest F in which the i-th leaf is underlined (that is, the leaf u[i] is
changed to u[i]). Beware thatF■i has no reason to be a µ-forest of u•i ∈ (A ⊎A)∗. In order to obtain
homogeneous notations for unmarked words, we let u•0 (resp. F■0) be simply u (resp. F).

3.3.2.1 Construction ofL . Let us first describe the submachines of L :

▶ it has a submachine old-T -from-(q1,i1)-to-(qn,in) for each T a submachine of L and (q1, i1),
(qn, in) configurations of T . This submachine is given an input F■i, where F ∈ Forests3|T|φ (u)
for some u ∈ A∗. It mimics the (not necessarily accepting) n-run (q1, i1) −→ · · · −→ (qn, in) of
T labelled by u•i. Its behavior is described in Algorithm 3.21 when T is not a leaf of L . The
case of a leaf is obtained by modifying Line 8 to output exactly the output (inB) of T .
The reader might justifiably argue that we create an infinite number of submachines, since they
are indexed by positions 1 ⩽ i1, in ⩽ |u|. In fact, such an indexing is only used to simplify the
description of the functions, and we only build a finite number of submachines. Indeed, we shall
always guarantee that the i1-th and in-th leaves of the inputF can be detected by the lookaround
when the i-th leaf is marked. Hence the configurations (q1, i1) and (qn, in) will be represented
by using a bounded information, independently from the inputF■i;

▶ it L also has a submachine new-T -from-(q1,i1)-to-(qn,in) for T a submachine of L which is
not a leaf. This submachine has the same behavior as old-T -from-(q1,i1)-to-(qn,in), while inlining
portions of the nested calls ofT within its own run. A major difference with the construction of

Jump to contents

3.3. SOLVING THE OPTIMIZATION PROBLEM FOR LAST TRANSDUCERS 93

Section 3.2 is that here, we shall not inline entire calls but only well-chosen portions of them: this
is the reason why our submachines are indexed by configurations.
Formally, new-T -from-(q1,i1)-to-(qn,in) is described in Algorithm 3.29. Whenever T is in posi-
tion ij of u•i and calls T ′, new-T -from-(q1,i1)-to-(qn,in) (F■i) first slices the accepting run of
T ′ on ⊢u•ij⊣, with respect to forestφ(u) and ij , as explained in Definition 3.30. Then, it inlines
the portions of ρ′ which move on positions whose origins depend on originF (ij). On the other
portions of runs, it makes a nested call, except if T ′ was a leaf of L .

Algorithm 3.29: Submachines of the last (k−1)-pebble transducer L

1 Submachine old-T -from-(q1,i1)-to-(qn,in) (F■i)
2 /* Suppose that T has shape (A ⊎A,C,Q, q0, F, δ, λ). */

3 u := word3|T|φ (F) /* Original unmarked input. */
4 (q1, i1) −→ · · · −→ (qn, in) := n-run of T from (q1, i1) to (qn, in) over u•i
5 for 1 ⩽ j ⩽ n do
6 if T ′ := λ(qj , (u•i)[ij]) ̸= ε then
7 (q′1, i

′
1) −→ · · · −→ (q′n, i

′
n′) := accepting n-run of T ′ labelled by u•ij

8 Call submachine old-T ′-from-(q′1,i
′
1)-to-(q′n′ ,i′n′) (F■ij)

9 end
10 end
11 Submachine new-T -from-(q1,i1)-to-(qn,in) (F■i)
12 /* Suppose that T has shape (A,C,Q, q0, F, δ, λ). */

13 u := word3|T|φ (F) /* Original unmarked input. */
14 (q1, i1) −→ · · · −→ (qn, in) := n-run of T from (q1, i1) to (qn, in) over u•i
15 for 1 ⩽ j ⩽ n do
16 if T ′ := λ(qj , (u•i)[ij]) ̸= ε then
17 (q′1, i

′
1) −→ · · · −→ (q′n′ , i′n′) := accepting n-run of T ′ labelled by u•ij

18 ℓ1, . . . , ℓN := slicing of (q′1, i′1) −→ · · · −→ (q′n′ , i′n′) with respect toF and ij
19 for p = 1 toN−1 do
20 m1 := ℓp andm2 := ℓp+1−1 /* Bounds of a sub-n-run */
21 if i′m1

, . . . , i′m2
∈ ↑ij then

22 /* (q′m1
, i′m1

) −→ · · · −→ (q′m2
, i′m2

) has bounded size. */
23 Inline the code of old-T -from-(q′m1

,i′m1
)-to-(q′m2

,i′m2
) (F■ij)

24 else if i′m1
, . . . , i′m2

∈ ↓ij then
25 /* Positions i′m1

, . . . , i′m2
are “below” ij in F. */

26 Inline the code of old-T -from-(q′m1
,i′m1

)-to-(q′m2
,i′m2

) (F■ij)

27 else if T ′ is a leaf of L then
28 /* The output of T ′ along the n-run

(q′m1
, i′m1

) −→ · · · −→ (q′m2
, i′m2

) is empty by Lemma 3.34.
*/

29 else
30 Call submachine new-T -from-(q′m1

,i′m1
)-to-(q′m2

,i′m2
) (F■ij)

31 end
32 end
33 end
34 end

Jump to contents

94 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

Definition 3.30 (Slicing)

Let u ∈ A+,F ∈ Forestsφ(u) and 1 ⩽ i ⩽ |u|. We let:
▶ ↑i := {1 ⩽ j ⩽ |u| | originF (i) observes originF (j)};
▶ ↓i := {1 ⩽ j ⩽ |u| | originF (j) observes originF (i)}.

Let ρ = (q1, i1) −→ · · · −→ (qn, in) be a n-run of a 2DT T on u•i. We build by induction
the sequence ℓ1, . . . , ℓN , called the slicing of ρ with respect toF and i, by ℓ1 := 1 and:

▶ if iℓj ∈ ↑i (resp. iℓj ∈ ↓i ∖ ↑i, resp. iℓj ∈ [1:|u|] ∖ (↑i ∪ ↓i)), then ℓj+1 ⩾ ℓj
is defined as the smallest index such that iℓj+1

̸∈ ↑i (resp. iℓj+1
̸∈ ↓i ∖ ↑i, resp.

iℓj+1
∈ [1:|u|]∖ (↑i ∪ ↓i));

▶ if such an index does not exist, then ℓj+1 := n+1.

The slicing describes when ρ enters or leaves the sets ↑i and ↓i, as depicted in Figure 3.31.

i
positions which
belong to ↓i∖↑i

positions which
belong to ↑i

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

ℓ6ℓ7ℓ8ℓ9

ℓ10 ℓ11 ℓ12 ℓ13 ℓ14 ℓ15 ℓ16

Figure 3.31: Slicing of the n-run ρ with respect to i andF .

Finally, the transducerL is obtained by defining new-T -from-(q1,i1)-to-(qn,in) as its head, whereT
is the head of L and (q1, i1), (qn, in) are chosen so that n-run (q1, i1) −→ · · · −→ (qn, in) is accepting.
This headwill be given an input of shape3 F■0. We also remove the submachines which are never called.
It remains to justify that the construction is correct and defines a last (k−1)-pebble transducer.

The key property ofL is that it never makes a nested call in a position whose origin depends on the
origin of the position of the previous call (which is the underlined position).

3.3.2.2 L has k−1 nested layers. We say that a submachine of a last pebble transducer has height
h ⩾ 1 if it is the head of a subtree of height h. Our goal is to show that the head of L has height k−1,
which is equivalent to saying that L has k−1 nested layers.

We first show by induction that if T has height h in B, then old-T -from-(q1,i1)-to-(qn,in) (if used)
has height h in L (this proof is easy). Second, we show by induction on 2 ⩽ h ⩽ k that if T has
height h in B, then new-T -from-(q1,i1)-to-(qn,in) (if used) has height h−1 in B. Indeed, the base
case h = 2 is justified by Line 28 in Algorithm 3.29 (there can be no nested calls). For h > 2 the
machine new-T -from-(q1,i1)-to-(qn,in) either inlines the code of old-T ′-from-(q′m1

,i′m1
)-to-(q′m2

,i′m2
)

(which has height h−1) or makes a nested call to new-T ′-from-(q′m1
,i′m1

)-to-(q′m2
,i′m2

) (which has height
h−2 by induction hypothesis), thus it has height h−1.

3.3.2.3 Each submachine of L is a two-way transducer (with lookaheads). Apart from the rep-
resentation of i1 and in, it should be clear that each old-T -from-(q1,i1)-to-(qn,in) can be implemented
by a 2DT. Indeed, it will move as before on the leaves ofF while following variable 1 ⩽ ij ⩽ |u|. Now,
we justify that each new-T -from-(q1,i1)-to-(qn,in) can also be implemented by a 2DT.

3Recall thatF■0 is just an homogenous notation forF with no marks.

Jump to contents

3.3. SOLVING THE OPTIMIZATION PROBLEM FOR LAST TRANSDUCERS 95

First, note that since F has bounded height, the number N given by the slicing in Line 17 of Al-
gorithm 3.29 is bounded by some B ⩾ 0. Furthermore, one can build a lookaround which detects the
i′ℓp-th leaf ofF whenever the ij-the leaf is underlined (the next result generalizes Claim 3.22).

Claim 3.32 (Slices can be detected)

For all submachine T which is not the head of L , a ∈ A ⊎ A and 1 ⩽ p ⩽ B, one can build
regular languages L,R ⊆ (A ⊎A ⊎ {⟨, ⟩})∗ such that:

▶ for all u ∈ A+ and for all 1 ⩽ i ⩽ |u|;
▶ for allF ∈ Forests3|T|φ (u) such that (q1, i1) −→ · · · −→ (qn, in) is the accepting n-run ofT

labelled by u•i, whose slicing with respect toF and i is ℓ1, . . . , ℓN (withN ⩽ B);
▶ for all 1 ⩽ i′ ⩽ |F|;

the following conditions are equivalent:

▶ (F■i)[1:i′−1] ∈ L, (F■i)[i′] = a and (F■i)[i′+1:|F|] ∈ R;
▶ F [i′] is the iℓp-th leaf ofF (i.e. it encodes position iℓp of u).

Proof. Recall that the slicing describe the indiceswhen the positions of the n-run cross the borders
between the sets ↑i, ↓i ∖ ↑i and [1:|u|]∖ (↑i ∪ ↓i). Since the behavior of a n-run can be described
using regular languages (recall the transitionmonoid of a 2DT), we only need to show that the leaves
whose positions encode the borders of ↑i and ↓i ∖ ↑i can be detected using regular languages.

For ↑i the result is clear since |↑i| is a bounded. For ↓i ∖ ↑i we use Claim 3.33, which implies
that this set is a bounded union of intervals (observe that it is also the case of [1:|u|]∖ (↑i ∪ ↓i)).

Claim 3.33 (Intervals of dependent positions)

Let t := originF (i). Assume that t ∈ ItersF (since t is an origin, it equivalent to t ̸= F) and
let t1 (resp. t2) be its immediate left (resp. right) sibling, then:

↓i ∖ ↑i = [min(FrF (t1)) : max(FrF (t2))]∖ {FrF (t1), FrF (t), FrF (t2)}.

Proof. Let us assume that t1 and t2 are iterable nodes of F (the other cases are similar). By
considering the forest of Figure 2.30, one sees that ↓i is [min(FrF (t1)) : max(FrF (t2))]. We
conclude since t, t1 and t2 are the only nodes that observe t and that t observes. ◀

Therefore↓i∖↑i is an unionof a boundednumber of intervals (since the frontiers have bounded
size). The borders of these intervals can easily be detected using regular languages. ◀

This analysis justifies why each iℓp can be encoded in a bounded way (thus it is also the case of iℓp−1

since it belongs to {iℓp−1, iℓp , iℓp+1]}) while being detectable by a lookaround. It remains to explain
how the “Inline the code” instructions of Lines 23 and 26 are implemented:

▶ if i′m1
, . . . , i′m2

∈ ↑ij , thenm2−m1 must be bounded (because |↑i| is bounded). Hence the sub-
machine old-T ′-from-(q′m1

,i′m1
)-to-(q′m2

,i′m2
) (F■ij) performs a bounded run. We inline its code

by producing its bounded output without moving4 from the current ij-th leaf. However, when
T ′ calls someT ′′ on position i′ℓ, we need to call some old-T ′′-from-(_,_)-to-(_,_) (F■i′ℓ). But
we cannot do this operation, since we are in leaf ij and not in i′ℓ. The solution is that the inlined

4The reader may suggest to make the submachine new-T ′-from-(q′m1
,i′m1

)-to-(q′m2
,i′m2

) (F■i) directly move on the leaves
i′m1

, . . . , i′m2
of F to perform the inlining of Line 26. However, this idea is not correct. Indeed, if the 2DT does so, it will

not be able to go back to position ij afterwards: since originF (im1) is roughly an ancestor of originF (ij), we intuitively lose
information when going from leaf ij to leaf to i′m1

.

Jump to contents

96 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

code calls a new submachine old-T ′′-from-(_,_)-to-(_,_)-pebble-i′ℓ which behaves as follows:
given an input F■ij , it simulates an execution of old-T -from-(_,_)-to-(_,_) (F■i′ℓ). In other
words, it makes “as though” the i′ℓ-th leaf was marked, instead of the ij-th one. As above, since
i′ℓ ∈ ↑ij , it can be encoded as a bounded information (thus we only create a finite number of
submachines) and one can build a lookaround which enables to if the current position is this leaf.

▶ if i′m1
, . . . , i′m2

∈ ↓ij ∖ ↑ij , then the nodes originF (i′m1
), . . . , originF (i′m2

) are roughly below
originF (i) in F (see Figure 2.30). Thus we inline old-T ′-from-(q′m1

,i′m1
)-to-(q′m2

,i′m2
) (F■ij), by

moving5 on leaves i′m1
, . . . , i′m2

. We keep track of the (bounded) height of originF (ij) above the
current originF (i′ℓ). We use a lookaround to detect when (q′m2

, i′m2
) is reached, and we finally go

back to leaf ij .

3.3.2.4 L is correct. It remains to justify thatL computes the function f ◦word3|T|µ . First, it is easy to
see that the old-T -from-(_,_)-to-(_,_) (F■i) are correct with respect to their (informal) specification.
So are the aforementioned old-T ′′-from-(_,_)-to-(_,_)-pebble-_.

For showing the correctness of new-T -from-(q1,i1)-to-(q2,i2) (F■i), we only need to show thatwhen
Line 28 of Algorithm 3.29 is reached, then the output of T ′ along the n-run (q′m1

, i′m1
) −→ · · · −→

(q′m2
, i′m2

) labelled by u•ij must be empty (as we make no calls in this case). This result is obtained by
observing that otherwise the conditions of Lemma 3.34 hold, which yields a contradiction.

Lemma 3.34 (Key lemma for removing one last pebble layer)

Let u ∈ A+ and F ∈ Forestsφ(u). Assume that there exists a sequence T1, . . . ,Tk of subma-
chines of L and a sequence of positions 1 ⩽ i1, . . . , ik ⩽ |u| such that:

▶ T1 is the head of L ;
▶ |produT1

(i1)|T2
̸= 0 and |produ•ik−1

Tk
(ik)| ≠ 0;

▶ for all 2 ⩽ j ⩽ k−1, |produ•ij−1

Tj
(ij)|Tj+1 ̸= 0;

▶ for all 1 ⩽ j ⩽ k−1, originF (ij) and originF (ij+1) are independent;

Then L is pumpable.

Proof. The proof is similar to that of Lemma 3.23. The goal is to show that for 1 ⩽ j ⩽ k, the
tj := originF (ij) can be chosen pairwise independent (in the hypothesis, it is only assumed for the
consecutive pairs (tj , tj+1)), since Lemma 2.33 enables to conclude if it is the case.

For this, we show once more how to make the number of dependent nodes decrease strictly,
while preserving the properties of Lemma 3.34. Assume that tℓ1 observes tℓ2 for some 1 ⩽ ℓ1 ̸=
ℓ2 ⩽ k (note that ℓ1 and ℓ2 cannot be consecutive). To simplify the proof, we assume that tℓ2 is an
ancestor of tℓ1 . We let u′ ∈ A+, F ′ ∈ Forestsφ(u

′), t′1, . . . , t′k ∈ NodesF ′ and 1 ⩽ i′1, . . . , i
′
k ⩽

|u′| be defined as the proof of Lemma 3.23 (recall Figure 3.24).
Now, we justify that produ•ij−1

Tj
(ij) = prod

u′•i′j−1

Tj
(i′j) for all 2 ⩽ j ⩽ k. This is the only

difference with the proof of Lemma 3.23. For this, we let v := u•ij−1 and v′ := u′•i′j−1 and
we show that µ(v[1:ij−1])⌊v[ij]⌋µ(v[ij+1:|v|]) = µ(v′[1:i′j−1])⌊v′[i′j]⌋µ(v′[i′j+1:|v′|]) by
distinguishing the following cases:
▶ if both ij−1 and ij belong to the subtree rooted in tℓ2 , then j ̸= ℓ2 (since otherwise originF (ij)

and originF (ij−1) would be dependent) and similarly j−1 ̸= ℓ2. The result holds because
we iterate an iterable node and ti′j−1

and ti′j are still in the same subtree;
▶ if both ij−1 and ij do not belong to the subtree rooted in tℓ2 , the argument is similar;

5The technique of the first item cannot be applied here, since the length of the inlined run (m2−m1) may not be bounded.

Jump to contents

3.4. DISCUSSION: BEYONDONE VISIBLE PEBBLE 97

▶ if ij−1 is in the subtree rooted in tℓ2 but not ij (the converse is similar), we use once more the
fact originF (ij) and originF (i′j) are independent. Indeed, it implies that ij cannot be “below”
an immediate sibling of tℓ2 . Hence duplicating the iterable node corresponding to tℓ2 will not
change the monoid value between positions ij−1 and ij . ◀

Thus L is a blind (k−1)-pebble transducer which computes f ◦ word3|T|φ . The result follows.

3.4 Discussion: beyond one visible pebble

In this section, we claim that the correspondence between asymptotic growth and nested layers for last
pebble transducers is tight, in the sense that it fails for more complex subclasses of pebble transducers6.

It is not hard (however quite tedious) to modify the definition of a last k-pebble transducer (Defini-
tion 3.8) in order to define a model of last-last k-pebble transducer. The latter consists in a pebble trans-
ducer where the position of the two previous calls are marked on the input of a submachine. In other
words, the last pebble is visible, but also the penultimate one (hence the “last-last”). Note that for k = 1, 2
and 3, a last-last k-pebble transducer is exactly the same as a k-pebble transducer.

As an immediate consequence of Theorem 1.48, we see that the function inner-squaring is such that
|inner-squaring(u)| = O(|u|2) and can be computed by a last-last 3-pebble transducer, but not by a last-
last 2-pebble transducer. Therefore the connection between minimal recursion height and growth of
the output fails. However, this result is somehow artificial. Indeed, a last-last 2-pebble transducer is a
somehow degenerate case, since it can only see one last pebble. More interestingly, we extend the failure
result to each level of the hierarchy, by re-using the counterexample of Theorem 1.51.

Proposition 3.35 (Quadratic growth can require k layers)

Let k ⩾ 1. The function alternating-squarek can be computed by a last-last (2k+1)-pebble trans-
ducer and is such that |alternating-squarek(u)| = O(|u|2).
However, alternating-squarek cannot be computed by a last-last 2k-pebble transducer

Proof. Thanks to Theorem 1.51, we only have to justify that alternating-squarek can be computed
by a last-last (2k+1)-pebble transducer. Fork = 2, we observing that only the two last loop indices
are useful when executing Algorithm 1.50, since we range over children. This observation can be
generalized to any k ⩾ 1 with loop indices i1, j1, i2, j2, . . . , ik, jk . ◀

One mystery may remain for the amazed reader: concretely, why is it impossible to generalize the
proof of Section 3.3 to pebble transducers (or last-last pebble transducers)? To explain this, let us consider
a 3-pebble transducer denoted P = T1⟨T2⟨T3⟩⟩. One can get inspired by last 3-pebble transducers
to define relevant notions of transition morphism and pumpability for 3-pebble transducers. Suppose that
T1⟨T2⟨T3⟩⟩ is not pumpable. Let us try to show that it is equivalent to a 2-pebble transducer P by
following a proof similar to that of Section 3.3.2

Let us describe the behavior ofP when simulatingT1⟨T2⟨T3⟩⟩. IfT1 callsT2 in a position i1, then
it inlines in T1 the portions of run of T2 in positions i2, whose origin depends on that of i1. However,
the portions of runs of T2 in the positions i2, whose origin is independent from that of i1, cannot be
inlined, thus they correspond to a nested call. Now, if T2 calls T3 in such an independent position i2,
then P should inline the whole run of T3 in T2. This run can be split in 3 cases:

6Hence last pebble transducer is somehow the “last” model for which the correspondence between growth and number of
layers holds. This observation was meant to be a pun in the title of [Dou23] (Pebble minimization: the last theorems) together with
the (more personal) fact that this paper is likely to be the last non-co-authored research paper of the author.

Jump to contents

98 CHAPTER 3. MAKING PEBBLES INVISIBLE: BLIND AND LAST PEBBLE TRANSDUCERS

(1) the portions of the run ofT3 in positions i3, whose origin in independent from that of i1 or from
that of i2. Along these portions, T3 must produce empty outputs, due to pumpability;

(2) the portions of the run of T3 in positions i3 origin depends on that of i2. These portions can be
inlined by using the techniques presented in Section 3.3.2;

(3) the portions of the run of T3 in positions i3 whose origin depends on that of i1. These portions
cannot be inlined by T2: indeed, if T2 moves to such positions, it will be unable to go back to i2
afterwards (this information was lost). This is precisely why the proof would fail.

As a conclusion, let us concretely illustrate the obstruction mentioned in Item (3) by re-using the
counterexample inner-squaring from Theorem 1.48. After Example 3.36, the reader should be convinced
that we have provided a good understanding of the limits of optimization for pebble transducers.

Example 3.36 (Inner squaring)

Recall that inner-squaring : u1# · · ·#un 7→ (u1#)n · · · (un#)n can be computed by a 3-pebble
transducer P = T1⟨T2⟨T3⟩⟩. Roughly, T1 drops a pebble on ui to indicate that it is currently
being written,T2 drops a pebble in uj to indicate that it produces the j-th copy of ui. Finally,T3

goes on the factor ui and outputs it. Thus T3 is exactly producing an output in positions which
“depend” on the position of the first pebble: this is precisely the case of Item (3).

Jump to contents

Chapter 4

Streaming computations andmarble
transducers

Elle a semblé sourire, et, plus audacieux,
On se dit : « L’Immortelle est peut-être une femme ! »
Et vers la main de marbre on tend sa main de flamme.

Théophile Gautier, « Ne touchez pas aux marbres »,
Un douzain de sonnets

In this chapter, we present yet another variant of pebble transducers, namedmarble transducers after
[EHV99]. Informally, a k-marble transducer is a last k-pebble transducer in which a submachine is only
allowed to move on the prefix which ends in the calling position. Hence the size of the input decreases
at each nested call. We shall extend marble transducers to recursive marble transducers, where the nested
calls are no longer required to describe a bounded tree (we allow recursion between the submachines).
Such recursive machines can produce outputs whose size is exponential in the input. The relationship
between marble transducers and the models of the previous chapters is presented in Figure 4.1.

POLYREGULAR
Pebble transducers

REGULAR

Two-way transducers

POLYBLIND
Blind pebble transducers

Recursive

marble tran
sducersMarble tran

sducers

Last pebble transducers

inner-squaring : u1# · · ·#un

7→ (u1#)n · · · (un#)n

square : u 7→ (u•1)# · · ·#(u•|u|)

blind-square : u 7→ (u#)|u|

prefixes : u 7→ u[1:1]#u[1:2]# · · ·#u[1:|u|]#

exp : an 7→ a2n

right-product : an#am 7→ (an#)m

Figure 4.1: Classes of functions studied in Chapters 3 and 4.

100 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

The main reason for introducing marble transducers is presented in Section 4.2: we show that re-
cursive marble transducers have the same expressive power as streaming string transducers. The latter is
a celebrated model from [AC10] which consists in a one-way automaton using registers to produce its
output string. Since this machine is one-way, it processes its input in a “streaming” fashion, which is
meaningful for practical applications. In Section 4.3, we describe a syntactic restriction on streaming
string transducers, called k-layeredness, which makes them equivalent to k-marble transducers. In par-
ticular, we recover a classical result showing that 1-layered (also known as copyless, since the value of a
register cannot be duplicated) streaming string transducers describe the class of regular functions.

The third main result of this chapter, presented in Section 4.4, shows that streaming string trans-
ducers (and therefore marble transducers and recursive marble transducers) can be optimized, i.e. that
the number of nested layers can be minimized. We also show that the connection between asymptotic
growth and nested layers holds: a function f computed a recursive marble transducer can be computed
by a k-marble transducer if and only if |f(u)| = O(|u|k). Interestingly, the proof techniques are very
specific to streaming string transducers and significantly different from those of Chapter 3: we no longer
use factorization forests but weighted automata. We thus claim that streaming string transducers shed a
new light on understanding the asymptotic growth of nested two-way transducers.

Finally, we discuss in Section 4.5 what happens when allowing recursion for the aforementioned
models of pebble transducers, last pebble transducers and blind pebble transducers.

The contributions presented in this chapter are based on the main theorems of [DFG20].

4.1 Marble transducers and recursion

Over trees, marble automata were first introduced as a variant of pebble automata in [EHV99]. Their
definition was inspired by the “checking tree pushdown transducers” from [ERS78]. We first describe
in Section 4.1.1 a model of k-marble transducer by adapting the definitions of k-pebble transducers and
their variants. In Section 4.1.2, we describe a more expressive model called recursive marble transducer.

4.1.1 Marble transducers

As mentioned above, for k ⩾ 1 a k-marble transducer can be seen as a last k-pebble transducer in which
the a submachines cannot use the whole input, but only its prefix which ends in the position of the call.
The behavior of a 3-marble transducer is depicted in Figure 4.3 (compare with Figure 3.9).

Definition 4.2 (Marble transducer)

Let k ⩾ 1 and T be a normalized 2DT with input alphabet A. We say that M is a k-marble
transducer with input alphabetA, output alphabetB and head T if:

▶ either k = 1, M = T and it has output alphabetB;
▶ or k ⩾ 2, M is a tree T ⟨M1⟩ · · · ⟨Mp⟩ with p ⩾ 1 and:

▶ the subtreesM1, . . . ,Mp are (k−1)-marble transducers with input alphabetA, out-
put alphabetB, and respective heads T1, . . . ,Tp;

▶ T has output alphabet {T1, . . . ,Tp}.

IfT is the head of the k-marble transducerM , we define the function computed byT withinM ,
denoted JJT KK : A∗ → B∗, by induction (in a similar way to pebble transducers):

▶ if k = 1, then JJT KK := JT K : A∗ → B∗ follows the usual 2DT semantics;

Jump to contents

4.1. MARBLE TRANSDUCERS AND RECURSION 101

▶ otherwise T has output alphabet T := {T1, . . . ,Tp} and the functions JJT1KK, . . . , JJT1KK have
been defined by induction. Let g : A∗ → (T × N)∗ be the function computed by T in origin
semantics. Given u ∈ A∗, if g(u) = (t1, i1) · · · (tn, in), then we let:

JJT KK(u) := JJt1KK(u[1:i1−1]) · · · JJtnKK(u[1:in−1]).

The function f : A∗ → B∗ computed byM is defined as JJT KK for its headT . We say that a 2DT T is
a submachine of the marble transducer M if T labels a node in the tree structure of M . We generalize
the notation JJT KK to any submachine T of M , by observing that it is the head of a subtree.

Input word⊢ ⊣

Headmachine

Input word⊢ ⊣

Submachine called in •

Input word⊢ ⊣

Submachine called in •

Figure 4.3: Behavior of a 3-marble transducer.

Example 4.4 (Right product)

Let A := {a,#}. The function right-product : am#an 7→ (am#)n where# is a fresh symbol
can be computed by a 2-marble transducer T1⟨T2⟩ where T1 calls the submachine T2 in each
position of an, and T2 outputs am# each time. Observe that right-product is polyblind.

Example 4.5 (Prefixes)

The function prefixes : u 7→ u[1:1]#u[1:2]# · · ·#u[1:|u|]# can be computed by a 2-marble
transducer. Recall that prefixes is not polyblind by Proposition 3.14.

We use the term marble transducer to denote a k-marble transducer for some k ⩾ 1.

4.1.1.1 Robustness and variants of the model. One can define variants of the k-marble transducer
model, in the spirit of the variants for k-pebble transducers described in Section 1.3.2 (that is, allowing
submachines with lookarounds, or non-total submachines, or side effects, or output in the inner nodes).
Such features do not modify the expressiveness of k-marble transducers for k ⩾ 1.

The next result deals with composition properties. It is obtained by easily leveraging standard proofs
techniques, e.g. those of Theorem 1.31 or Theorems 1.43 and 3.6.

Proposition 4.6 (Composition with regular and rational functions)

For all k ⩾ 1, the class of functions computed by k-marble transducers is effectively closed under
post-composition by regular functions and under pre-composition by rational functions.

Jump to contents

102 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

We shall see in Proposition 4.21 that this class of functions is not closed under composition, nor even
under pre-composition by regular functions. Intuitively, this is due to the fact that marble transducers
are not a symmetrical model with respect to mirror images, since they make nested calls “on the left”.

4.1.2 Recursive marble transducers

In this section, we present an extension of marble transducers, which are built by turning their tree
structure into a graph structure. In other words, we allow the submachines not only to call their children
in a tree, but to call any other submachine, including themselves. In yet other words, we enable the
submachines to perform recursive calls, hence we name this model recursive marble transducer.

Definition 4.7 (Recursive marble transducer)

A recursive marble transducer M with input alphabetA and output alphabetB consists of:

▶ a finite collectionT1, . . . ,Tp of normalized 2DT with input alphabetA and output alpha-
bet {T1, . . . ,Tp} ⊎B, called the submachines of M ;

▶ a distinguished T ∈ T1, . . . ,Tp called the head of M .

The functions computed by the submachines T1, . . . ,Tp within M , are defined in a mutually re-
cursive fashion and denoted by JJT1 KK, . . . , JJTpKK : A∗ → B∗. This recursion is well-founded since the
size of the input strictly decreases when making recursive calls.

Formally, let T := {T1, . . . ,Tp}. Given 1 ⩽ j ⩽ p, let g : A∗ → ((T ⊎B)×N)∗ be the function
computed by Tj in origin semantics. Given u ∈ A∗, if g(u) = (t1, i1) · · · (tn, in), then we let:

JJTj KK(u) := JJt1KK(u[1:i1−1]) · · · JJtnKK(u[1:in−1]).

where JJbKK for b ∈ B denotes the constant function v 7→ b.

The function f : A∗ → B∗ computed by M is defined as JJT KK for its head T . Contrary to all of
the models described in Chapters 1 and 3, recursive marble transducers can produce outputs whose size
is exponential in the input, as explained in Examples 4.8 and 4.9.

Example 4.8 (Exponential output)

The function exp : an 7→ a2
n

can be computed by a recursive marble transducer M = {T },
where T outputs a on input ε, and otherwise calls itself twice from the last position of its input.

Example 4.9 (Right exponential)

Let A := {a,#}. The function right-exp : am#an 7→ (am#)2
n

where# is a fresh symbol can
be computed by a recursive marble transducer inspired by that of Example 4.8.

4.1.2.1 Robustness and variants of themodel. Note that marble transducers are a particular case of
recursive marble transducers. Furthermore, one can show that if f is computed by a recursive marble
transducer, then |f(u)| = 2O(|u|). As a immediate consequence, the class of functions computed by
such machines is not closed under composition (consider e.g. the function exp ◦ exp).

Jump to contents

4.1. MARBLE TRANSDUCERS AND RECURSION 103

It is easy to see that allowing the submachines of recursive marble transducers to use lookarounds
does not modify the expressiveness of the model. However, non-total submachines or side effects (see
Section 1.3.2.3) may raise more issues, since one cannot proceed by induction on the tree of calls (as
claimed in Section 1.3.2.2) to show that the domain of the function is a regular language. In fact, this is
still the case. Indeed, themodel ofmarble automata introduced in [EHV99] coincides with the underlying
automata of our recursivemarble transducers when allowing side effects, and it follows from in [EHV99,
Proposition 4.2] that this model captures exactly regular languages1.

Another easy consequence of [EHV99, Proposition 4.2] is that recursivemarble transducers preserve
regular languages by inverse images. Observe that this result could already be deduced in the case of
marble transducers, as a particular case of pebble transducers and using Proposition 1.41.

Proposition 4.10 (Regular pre-images)

Let f : A∗ → B∗ be computed by a recursive marble transducer and L ⊆ B∗ be a regular
language. Then f−1(L) ⊆ A∗ is (effectively) a regular language.

4.1.3 Optimization theorems

We are ready to state themain optimization results of this chapter, which connect the asymptotic growth
of marble transducers to the minimal number of layers needed to represent a function. The following
Theorems 4.11 and 4.12 both originate from [DFG20, Theorem 17].

Theorem 4.11 (Optimization of marble transducers)

Let 1 ⩽ ℓ ⩽ k and f : A∗ → B∗ be computed by ak-marble transducer. Then f can be computed
by an ℓ-marble transducer if and only if |f(u)| = O(|u|ℓ). This property is decidable. If it holds,
one can build an ℓ-marble transducer which computes f .

It is very likely that a proof of Theorem 4.11 can be done by following the sketch of Section 3.3 and
using factorization forests. However, in the current chapter we shall rely on different techniques and use
the forthcoming correspondence between marble transducers and layered streaming string transducers.
These techniques are very specific to marble transducers, furthermore they can naturally be generalized
to optimize recursive marble transducers, yielding Theorem 4.12.

Theorem 4.12 (Optimization of recursive marble transducers)

Let f : A∗ → B∗ be computed by a recursive marble transducer. Then f can be computed by a
marble transducer if and only if |f(u)| = O(|u|k) for some k ⩾ 0. This property is decidable. If
it holds, one can build a marble transducer which computes f .

Proof of Theorems 4.11 and 4.12. Given a recursivemarble transducer computing a function f ,
we transform it into a deterministic streaming string transducer (DSST) using Theorem 4.17. Then,
we apply Theorem 4.41 to determine the least k ⩾ 1 such that |f(u)| = O(|u|k) if it exists, and in
this case we build a (k,K)-boundedDSSTwhich computes f . Finally, we convert this machine in a
k-marble transducer thanks to Item (1)⇒ Item (2) of Theorem 4.34 (shown in Section 4.3.4). ◀

1Their result is in fact more general, since it deals with regular tree languages.

Jump to contents

104 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

4.2 Streaming string transducers

The streaming string transducer model was introduced by Alur and Cerný [AC10]. Such machines can
produce outputs whose size is exponential in the input size. The goal of this section is to describe this
model and show that its expressive power is the same as that of recursive marble transducers.

4.2.1 Streaming string transducers of finite words

Intuitively, a streaming string transducer consists of a one-way deterministic automaton enriched with a
finite set R of registers that store strings over some output alphabet B. This machine has nothing to
do with the model of register automaton (see e.g. [NSV04]): the latter works over infinite alphabets and
can compare the registers to select the transitions. It will never be the case here: the registers cannot
be read, their only purpose is to contain portions of the final output. These registers are modified using
substitutions, i.e. functions of typeR → (B ⊎ R)∗. We denote by SBR the set of these substitutions. A
substitution s can be extended as a morphism from (B ⊎R)∗ to (B ⊎R)∗ by mapping each r ∈ R to
s(r) and each b ∈ B to itself. Substitutions can be composed, as explained in Example 4.13.

Example 4.13 (Substitutions)

Let R := {r, s} and B := {b}. Consider the substitutions s1 := r 7→ b, s 7→ brsb and s2 :=
r 7→ rb, s 7→ rs, then s1 ◦ s2(r) = s1(rb) = bb and s1 ◦ s2(s) = s1(rs) = bbrsb.

As their name suggest, streaming string transducers process their input in a “streaming” fashion, i.e.
in a single pass from left to right, contrary to two-way transducers.

Definition 4.14 (Streaming string transducer)

A deterministic streaming string transducer (DSST) S = (A,B,Q, q0, δ,R, λ, τ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with an initial state q0 ∈ Q;
▶ a transition function δ : Q×A ⇀ Q;
▶ a finite setR of registers;
▶ an initial function ι : R→ B∗;
▶ a register update function λ : Q×A→ SBR ;
▶ an output function τ : Q→ (R ∪B)∗.

In Section 2.1.1, we have defined the extended transition function and extended output function for
2DT. We define extended functions for DSST in a similar (even easier) fashion:

▶ the extended transition function δ∗ : Q × A∗ → Q defined inductively by δ∗(q, ε) = q for all
q ∈ Q, and δ∗(q, ua) = δ(δ∗(q, u), a) for all q ∈ Q, a ∈ A and u ∈ A∗;

▶ the extended output function λ∗ : Q × A∗ → SBR defined inductively by λ∗(q, ε)(r) = r for all
q ∈ Q and r ∈ R, and λ∗(q, ua) = λ∗(q, u) ◦ λ(δ∗(q, u), a) for all q ∈ Q, a ∈ A and u ∈ A∗.
Intuitively, this construction describes “the substitution applied when starting from state q and
reading u ”. When reading new letters, we add substitutions “on the right”, which means that if
λ(q, a)(r) = cc, λ(q, a)(s) = d and λ(δ(q, a), b)(r) = rs, then λ∗(q, ab)(r) = ccd.

For all r ∈ R and u ∈ A∗, we define the substitution JJ·KKu : R → B∗ which provides “the values of
the registers after reading u” by JJrKKu := (ι ◦ λ∗(q0, u))(r). As a substitution, we can extend JJ·KKu to a
function (R⊎B)∗ → B∗. Now, we define the function JS K : A∗ → B∗ computed by theDSST. Given

Jump to contents

4.2. STREAMING STRING TRANSDUCERS 105

u ∈ A∗, we let JS K(u) := JJτ(δ∗(q0, u))KKu. In other words, the output function is used to combine
the final values JJrKKu of the registers, obtained after reading the whole word.

Example 4.15 (Reverse)

The reverse function u 7→ ũ from Example 1.22 can be computed by a DSST with a single state
and a single register r. When reading a letter a, the DSST updates r 7→ ar. Finally it outputs r.

Example 4.16 (Exponential output)

The function exp : an 7→ a2
n

from Example 4.8 can be computed by a DSST with a single state
and a single register r initialized to a and updated r 7→ rr at each transition.

One can provide an alternative definition of DSST where the underlying one-way deterministic
automaton (A,Q, q0, δ,Dom(τ)) is not complete (i.e. the functions δ, λ and τ may not be total). Obvi-
ously, the function computed by such a machine would have a regular language as domain. Therefore,
non-totality does not give additional expressiveness to the model.

4.2.2 Equivalence with recursive marble transducers and consequences

The main goal of Section 4.2 is to link DSST to recursive marble transducers in Theorem 4.17, which
from originates [DFG20, Theorem 10]. We also discuss low hanging consequences.

Theorem 4.17 (Recursive marble transducers=DSST)

Recursive marble transducers and DSST compute the same class of functions. Furthermore, both
conversions are effective.

Proof. Section 4.2.3 describes the conversion fromDSST to recursivemarble transducers and Sec-
tion 4.2.4 describes the reverse transformation. ◀

Theorem 4.17 enables to transfer known results on DSST to recursive marble transducers.

Corollary 4.18 (Equivalence of recursive marble transducers)

Given two recursive marble transducers, one can decide if they compute the same function.

Proof. Equivalence of DSST is known to be decidable by [FR17] (whose proof is nearly entirely
based on [CK86]). See [Boj19, Section3] for a more self-contained and generic result. ◀

Theorem4.17 enables to investigate the expressive power of ourmachines. The next result originates
from [Eng81, Theorem 3.16]. It is also explicit in [DFG20, Section 6] and [NNP21, Theorem 8.1].

Proposition 4.19 (Separation for marble transducers)

The functions blind-square and square cannot be computed by a recursive marble transducer.

Proof. It is easy to observe that the class of functions computed by recursive marble transducers
is closed under post-composition by a morphism. We only need to show that blind-square : u 7→

Jump to contents

106 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

(u#)|u| cannot be computed by such a machine. Assume by contradiction that this function is
computed by a DSST S = (A,A ⊎ {#}, Q, q0, δ,R, ι, λ, τ) and let a ∈ A.

Givenm ⩾ 0, we let qm := δ∗(q0, a
m). By the pigeonhole principle, there exist q ∈ Q and an

infinite set I ⊆ N such that qm = q for allm ∈ I . Now form,n ⩾ 0, letRm,n ⊆ R be the set of
registers which occur in λm,n := λ∗(qm, a

n)(τ(qm+n)) ∈ (R⊎A⊎ {#})∗, that is the registers
that will be used in the output after reading an, assuming that am was already read. For allm ∈ I
andn ⩾ 0, we observe thatλ∗m,n = λ∗(q, an)(τ(δ(q, an))) only depends onn ⩾ 0, hence so does
Rn := Rm,n. Furthermore, given a fixed n ⩾ 0, we haveRn ̸= ∅ since otherwise |JS K(am+n)|
would be bounded whenm variates in I . By the pigeonhole principle there exist∅ ̸= T ⊆ R and
an infinite set J ⊆ N such thatRn = T for all n ∈ J .

Let n0 < n1 ∈ J . We claim that for all r ∈ T, andm ∈ I , |JJrKKam | < 2(m+n0)+2. Indeed,
otherwise #am+n0# would be a factor of JJrKKam since the value of r is used within the output
on am+n0 , which contradicts the fact that this value is also used within the output on am+n1 . We
conclude that |JS K(am+n0)| = O(m) whenm variates in I , which yields a contradiction. ◀

As a consequence of Propositions 3.15 and 4.19 and Examples 4.4, 4.5 and 4.8, all inclusions between
the classes of functions computed by blind pebble transducers, marble transducers and last pebble trans-
ducers are strict (already for machines with 2 layers), as depicted in Figure 4.1.

We shall see in Section 5.1 that when the output lies in commutative monoid (in particular, over a
unary output alphabet B = {b}) marble transducers and pebble transducers have the same expressive
power. In other words, only the horizontal blue ellipse of Figure 4.1 exists in this case. Over non-unary
alphabets, the related classmembership problems have not been studied. Open question 4.20 seems to be
a first reasonable step, which might be solved by generalizing the proof techniques of Proposition 4.19.
This question is meaningful since it asks whether a function is “streamable”.

Open question 4.20 (Last pebble transducers→Marble transducers)

Given a function f : A∗ → B∗ computed by a last pebble transducer, is it decidable whether f
can be computed by a marble transducer?

Finally, we provide a non-closure property which originates from [DFG20, Claim 27]. It roughly
means that the model of marble transducers is not symmetrical with respect to reversing the output.

Proposition 4.21 (Non-composition of marble transducers)

The function left-product : am#an 7→ (an#)m cannot be computed by a recursivemarble trans-
ducer. As a consequence, the classes of functions computed by marble transducers or recursive
marble transducers are not closed under pre-composition by regular functions.

Proof idea. For showing that left-product is not computable, we follow exactly the same sketch
as for the proof of Proposition 4.19. The consequence comes by observing that left-product is the
pre-composition of right-product from Example 4.4 by the mirror function. ◀

4.2.3 From streaming string transducers to recursive marble transducers

The goal of this section is to show one half of Theorem 4.17, by describing how to transform a DSST
into an equivalent recursive marble transducer. Consider an DSST S = (A,B,Q, q0, δ,R, ι, λ, τ)
computing a function f : A∗ → B∗. We describe a recursive marble transducerM which computes f .

Jump to contents

4.2. STREAMING STRING TRANSDUCERS 107

4.2.3.1 Submachines of M . For all r ∈ R, M has a submachine value-of-r which outputs JJrKKu on
input u ∈ A∗. If u = u′a, it first determines the substitution r 7→ α which is applied when reading
letter a (by moving forward from the last position of u while simulating the transitions of S) and then
makes recursive calls to compute the values of JJsKKu′ for s occurring in α.

Algorithm 4.22: Submachine which computes the value of r ∈ R

1 Submachine value-of-r(u)
2 if u = ε then
3 Output ι(r) /* Base case */
4 else if u = u′a then
5 q := δ∗(q0, u

′) /* Computed by doing a left to right pass. */
6 α := λ(q, a)(r) /* Current substitution r 7→ α. */
7 for j in {1, . . . , |α|} do
8 if α[j] ∈ B then
9 Output α[j]

10 else
11 Call submachine value-of-α[j](u′)
12 end
13 end
14 end

4.2.3.2 Head of M . Finally, the head of M is an extra specific submachine value-of-τ which uses re-
cursive calls to produce JJτ(δ∗(q0, u))KKu on input u ∈ A∗. It should be clear that M computes f .

4.2.4 From recursive marble transducers to streaming string transducers

The goal of this section is to show the other half of Theorem 4.17, by describing how to transform a re-
cursive marble transducer into an equivalentDSST. LetM be a recursive marble transducer computing
a function f : A∗ → B∗, we describe a DSST S which computes f .

To simplify the notations, we assume that M consists of a single submachine T . The main idea
is to adapt the classical transformation from two-way automata to one-way automata from [She59], by
makingS keeping track of the right-to-right and initial runs ofT . Observe that due to the presence of
recursive calls, the same portions of runs can be executed multiple times during the computation2.

4.2.4.1 Information stored by S . Assume that the head T has shape (A,B,Q, q0, F, δ, λ) and let
−→ be its transition relation. We use the notations introduced in Section 2.1.1 for the extended transition
function and extended output function of a 2DT. After reading u ∈ A∗, S will store:

(1) informations about the right-to-right runs of T labelled by ⊢u:
(a) for all p ∈ Q such that δ∗(←−p ,⊢u) has shape−→q , the state q, stored in the states of S ;
(b) for all p ∈ Q such that δ∗(←−p ,⊢u) has shape−→q , the value λ∗∗(←−p ,⊢u), which is the output

produced byM alongmaxi-run(←−p ,⊢u). Roughly, λ∗∗(←−p ,⊢u) concatenates the outputs of
the recursive calls3 along the runmaxi-run(←−p ,⊢u) ofT . Thus λ∗∗(←−p ,⊢u) ∈ B∗ whereas
λ∗(←−p ,⊢u) ∈ (B⊎{T })∗ since the latter does not execute the recursive calls (it onlywrites
their names). This value is stored in a register rightp of S ;

2This behavior is translated into register copies by our construction.
3This definition is relevant since the recursive calls are done on a prefix of u, which is itself a prefix of our input. However, for

a pebble transducer, the output of a nested call would depend on the whole input, which is not yet known.

Jump to contents

108 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

(2) informations about the beginning of the initial run labelled by ⊢u:
(a) if δ∗(−→q0 ,⊢u) has shape−→q , the state q, stored within the states of S ;
(b) if δ∗(−→q0 ,⊢u) has shape −→q , the output λ∗∗(−→q0 ,⊢u) produced along this run by M . This

value λ∗∗(−→q0 ,⊢u) is stored in a register out of S .

4.2.4.2 Updating the right-to-right and initial runs. Assume that S has computed the elements
of Items (1) and (2) for some u ∈ A∗. Let a ∈ A and p0 ∈ Q, we first explain in Claim 9.17 how
maxi-run(←−p0,⊢ua) can be described by recombining the informations about ⊢u.

Claim 4.23 (Updating right-to-right runs)

δ∗(←−p0,⊢ua) = −→q if and only there exist 0 ⩽ n < |Q| and q1, p1, . . . , qn, pn ∈ Q such that:

▶ δ(pn, a) = (▷, q) and for all 0 ⩽ i < n, δ(pi, a) = (◁, qi+1);
▶ for all 1 ⩽ i < n, δ∗(←−qi , u) = −→pi .

In this case, we have:

λ∗∗(←−p0,⊢ua) = JJλ(p0, a)KK(u) λ∗∗(←−q1 ,⊢u) JJλ(p1, a)KK(u) · · · λ∗∗(←−qn,⊢u) JJλ(pn, a)KK(u)

where for all 0 ⩽ i ⩽ n, JJλ(pi, a)KK := JJt1KK · · · JJtmKK if JJλ(pi, a)KK = t1 · · · tm, thus it denotes
the concatenation of the submachines called when doing this transition.

Proof idea. If δ∗(←−p0,⊢ua) = −→q , then maxi-run(←−p0,⊢ua) has the same structure as the run of
Figure 4.24. We get n < |Q| since one cannot have pi = pj for 0 ⩽ i < j ⩽ n. ◀

⊢ a
p0q1
p1

q2

p2
q3

p3 q

Figure 4.24: Structure of a right-to-right run starting in configuration (p0, |⊢ua|).

Now, S can compute4 the states q1, p1, . . . , qn, pn, q ∈ Q whenever they exist. Let us explain
how to update the value contained in rightq by doing a substitution. The values λ∗∗(

←−pi ,⊢u) are stored
in registers rightpi

, thus they can directly be used in the update. Furthermore, for all 0 ⩽ i ⩽ n, if
JJλ(pi, a)KK = t1 · · · tm, then for all 1 ⩽ j ⩽ m, the value tj is either:

▶ b ∈ B, and then b = JJbKK(u) can directly be written in the substitution;
▶ orT , but then JJT KK(u) is obtained by considering the accepting run ofT labelled by⊢u⊣. Since

T is normalized, this run produces no output when reading⊣, thus its output can be decomposed
as the concatenation of λ∗∗(−→q0 ,⊢u) and λ∗∗(←−p ,⊢u) for some p ∈ Q. Therefore it can be com-
puted by using the values stored in the registers out and rightp for p ∈ Q.

The updates of Item (2) are done by a similar construction for maxi-run(−→q0 ,⊢u).
4Since this computation is bounded, it is in fact hardcoded in the transitions of S .

Jump to contents

4.3. LAYERED STREAMING STRING TRANSDUCERS 109

4.2.4.3 Output function ofS . Once the whole input is read, S can recombine all pieces of inform-
ation in order to obtain the output of M . This construction is similar to that of the update.

4.3 Layered streaming string transducers

In this section, we show that for all k ⩾ 1, a syntactic restriction onDSST called k-layeredness enables to
capture exactly the expressive power of k-marble transducers. For k = 1, we recover the original result
of [AC10]which shows that copyless streaming string transducers exactly compute regular functions. The
correspondences between the various models are depicted in Figure 4.25.

Recursive marble transducers
= streaming string transducers (DSST)

Marble transducers
= layered DSST

...

3-marble transducers
= 3-layered DSST

2-marble transducers
= 2-layered DSST

REGULAR
Two-way transducers
= copyless DSST

2O(n)

⋃
k⩾1O(nk)

O(n3)

O(n2)

O(n)

right-exp : am#an 7→ (am#)2
n

right-product : am#an 7→ (am#)n

Figure 4.25: Classes of functions computed by marble transducers and recursive marble transducers.

4.3.1 Copy restrictions for substitutions

Intuitively, the way for a DSST to produce outputs of exponential growth is to have substitutions of
shape r 7→ rr (duplication of a register value), and then to repeat this operation along a computation.
The notion of k-layeredness is a syntactic guarantee for avoiding such behaviors.

4.3.1.1 Copyless andK-boundedDSST. We first recall the notions of copyless andK-boundedDSST,
which originate from [AC10, AFT12]. The main idea is to forbid register copies.

Definition 4.26 (Copyless DSST)

A substitution s : R→ (R⊎B)∗ is copyless if every s ∈ R occurs at most once in {s(r) | r ∈ R}.
A DSST is said to be copyless if all its substitutions are copyless.

Note that if f : A∗ → B∗ is a function computed by a copylessDSST, then |f(u)| = O(|u|). Indeed,
the values contained in the registers are at most linear in the size of the prefix read so far.

Jump to contents

110 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

Example 4.27 (Copyless substitutions)

The substitution s1 := r 7→ b, y 7→ brsb is copyless, while s2 := r 7→ rb, s 7→ rs is not.

Now, we recall the notion ofK-bounded DSST as presented in [DJR18, Section 2.1]5. Intuitively, it
means that even if a register value can be duplicated, it can never be used more than K times within
another register during the computation. Thus the size of the output is still linear.

Definition 4.28 (Bounded DSST)

Let K ⩾ 1. A substitution s : R → (R ⊎ B)∗ is K-bounded if for all r, s ∈ R, s occurs at
mostK times in s(r). A DSST S := (A,B,Q, q0,R, ι, λ, τ) is said to beK-bounded if for all
q ∈ Q, u ∈ A∗, the substitution λ∗(q, u) isK-bounded.

The definition of copyless DSSTwas “local”, in the sense that we only gave conditions on the substi-
tutions λ(q, a) for a ∈ A. It is equivalent to a “global” definition saying that each λ∗(q, u) for u ∈ A∗

is copyless, because the composition of copyless substitutions is also copyless. Since a copyless substitu-
tion is 1-bounded, it follows that copyless DSST are 1-bounded. However, the converse does not hold
because 1-boundedness allows substitutions of shape r 7→ r, s 7→ r. Furthermore, a “local” definition of
K-bounded DSST (i.e. putting conditions only on the λ(q, a)) would be weaker than our “global” one.
Indeed, it is easy to see that the composition ofK-bounded substitutions may not beK-bounded.

Example 4.29 (Composition of 1-bounded substitutions)

The substitutions s1 := r 7→ r, s 7→ r and s2 := r 7→ ε, s 7→ rs are 1-bounded. However,
s1 ◦ s2(s) = rr, hence this substitution is not 1-bounded.

4.3.1.2 k-layered and (k,K)-boundedDSST. Now, we intend to define a restriction ofDSSTwhich
forces the output to have polynomial size (but not necessarily linear). We thus introduce the notion of
k-layeredness, which originates from [DFG20, Definition 13]. The idea is to force the setR of registers
to be partitioned in k layersR1, . . . ,Rk , so that each layerRi is “copyless in itself”, but can use many
copies of the registers belonging to layersRj for j < i.

Definition 4.30 (k-layered DSST)

Let k ⩾ 1. A DSST (A,B,Q, q0, δ,R, ι, λ, τ) is said to be k-layered if there exists a partition
R1, . . . ,Rk ofR, such that ∀q ∈ Q, ∀a ∈ A, the following holds:

▶ ∀1 ⩽ i ⩽ k, only registers fromR1, . . . ,Ri appear in λ(q, a)(r) for r ∈ Ri;
▶ ∀1 ⩽ i ⩽ k, each register s ∈ Ri appears at most once in {λ(q, a)(r) | r ∈ Ri}.

Observe that 1-layeredDSST are exactly copylessDSST. The updatemechanismof a 3-layeredDSST
is depicted in Figure 4.32 below. The reader is invited to check that if f : A∗ → B∗ is a function
computed by a k-layered DSST, then |f(u)| = O(|u|k).

Example 4.31 (Right product)

The function right-product : am#an 7→ (am#)n from Example 4.4 is computed by a 2-layered

5Several definitions ofK-bounded DSST coexist in the literature. A different one can be found e.g. in [AFT12, Definition 5].

Jump to contents

4.3. LAYERED STREAMING STRING TRANSDUCERS 111

DSST with R0 = {r} and R1 = {s} as follows. First, when reading am#, the machine stores
am# in r, while keeping ε in s. Then, each time it sees a a, it applies r 7→ r, s 7→ rs.

Input word

R3

R2

R1

R3

R2

R1

Figure 4.32: Update of the registers in a 3-layered DSST.

For k ⩾ 1, we also define a (k,K)-bounded DSST in a similar fashion as a k-layered DSST, except
that each layer is no longer “copyless in itself” but “K-bounded in itself”.

Definition 4.33 (Bounded DSST with layers)

Let k,K ⩾ 1. We say that a DSST S := (A,B,Q, q0, δ,R, ι, λ, τ) is (k,K)-bounded if there
exists a partitionR1, . . . ,Rk ofR such that for all q ∈ Q, u ∈ A∗:

▶ for all 0 ⩽ i ⩽ k, only registers fromR1, . . . ,Ri appear in {λ(q, u)(r) | r ∈ Ri};
▶ for all 1 ⩽ i ⩽ k and r, s ∈ Ri, s occurs at mostK times in λ(q, u)(r).

In particular, a (1,K)-bounded DSST is a exactly a K-bounded DSST. As mentioned above for
k = 1, k-layered DSST are syntactically more restrictive than (k, 1)-bounded DSST. The main interest
of bounded DSST is their use as an intermediate model in the proofs.

4.3.2 Equivalence with marble transducers

Nowwe are ready to claim that layeredness is a restriction ofDSSTwhich exactly captures the power of
marble transducers. The next result originates from [DFG20, Theorem 15].

Theorem 4.34 (Marble transducers = layered/bounded DSST)

Given f : A∗ ⇀ B∗ and k ⩾ 0, the following conditions are equivalent:

(1) f is computed by a k-marble transducer;
(2) f is computed by a (k,K)-bounded DSST for someK ⩾ 0;
(3) f is computed by a k-layered DSST.

The conversions are effective.

Proof. Item (3)⇒ Item (1) is shown in Section 4.3.3. Item (2)⇒ Item (3) is shown in Section 4.3.4.
For Item (1)⇒ Item (2), we first transform the k-marble transducer in a (not necessarily k-layered)
DSST using Theorem 4.17. Since the function f computed by a k-marble transducer is such that
|f(u)| = O(|u|k), we use Theorem 4.41 to build a (k,K)-bounded DSST for f . ◀

The case k = 1 in Theorem 4.34 provides the celebrated result of [AC10] (shown using different
techniques) which relates regular functions and copyless DSST. From a practical point of view, this
statement provides a streamingmachinemodel for implementing regular functions. Indeed, if aDSST is
copyless, one can implement its transitions in constant time (assuming that its registers are represented
by doubly linked lists), since we never duplicate the content of a register.

Jump to contents

112 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

Corollary 4.35 (Two-way transducers= copyless/bounded DSST)

Given f : A∗ ⇀ B∗, the following conditions are equivalent:

(1) f is computed by a 2DT (i.e. f is regular);
(2) f is computed by aK-bounded DSST for someK ⩾ 0;
(3) f is computed by a copyless DSST.

The conversions are effective.

4.3.3 From layered streaming string transducers to marble transducers

The goal of this section is to show Item (3)⇒ Item (1) in Theorem 4.34. Given k-layered DSST, we
describe how to build an equivalent k-marble transducer. The main idea is to mimic the proof of Sec-
tion 4.2.3, while making nested calls only when they are absolutely necessary, that is when going from
one layer to another. Let S = (A,B,Q, q0, δ,R, ι, λ, τ) be a k-layered DSST.

4.3.3.1 Case k = 1. We first suppose that k = 1, that is S is copyless. In this case, our procedure
is similar to that of [DJR18, DFJL17]. We simulate the recursion of Algorithm 4.22, but without using
submachines. Lemma 4.36 crucially relies on a clever use of copylessness.

Lemma 4.36 (Simulation of Algorithm 4.22 by a two-way transducer)

One can build a 2DT with lookarounds T with designated states pr and rr for r ∈ R, such
that the following holds. For all input u ∈ A∗, 1 ⩽ i ⩽ |u| and r ∈ R, the longest run of
T labelled by ⊢u⊣ which starts in configuration (pr, |⊢u[1:i]|) and moves on ⊢u[1:i] has the
following property: it outputs JJrKKu[1:i] and it ends in configuration (rr, |⊢u[1:i]|+1).

Proof. The idea is to simulate the whole computation of Algorithm 4.22withoutmaking recursive
calls. When in position |⊢u[1:i]| of input ⊢u⊣, T first uses its lookaround to determine the state
q := δ∗(q0, u[1:i−1]) of S , and the substitution α := λ(q, u[i])(r). Then it simulates the “for”
loop of Line 7 and outputs α[j] if it belongs to B. Now if s := α[j] is a register, then T moves
left to position i−1 and goes to state ps. By induction, we assume that T can repeat this process
to output JJsKKu[1:|u|−1], go back to position |⊢u[1:i]| in state rs. Since S was copyless, s ∈ R

occurs a most once in the whole set {λ(q, u[i])(t) | t ∈ R} (which can be determined using a
lookaround). Thus T can recover the fact that it was computing index α[j] in r 7→ α and pursue
the loop. When the loop is ended, it moves right in position |⊢u[1:i]|+1 and goes to state rr. ◀

The final 2DT which simulates S is built by using T from Lemma 4.36 to compute the values of
the registers which occur in the final output function.

Remark 4.37 (Two-way copyless SST)

Going further, one can adapt the proof of Section 4.3.3.1 to show that a two-way copyless stream-
ing string transducer (defined as a DSST, but allowing two-way moves) can be transformed in an
equivalent 2DT. As a consequence, this model as expressive as copyless (one-way) DSST.

4.3.3.2 Case k > 1. Let R1, . . . ,Rk be the partition of the registers of S . Roughly, we want the
k-marble transducer to have a submachine value-of-r for all r ∈ R, 1 ⩽ i ⩽ k and r ∈ Ri, but this
submachine will only call value-of-s for s ∈ Rj with j < i (hence there is no recursion).

Jump to contents

4.3. LAYERED STREAMING STRING TRANSDUCERS 113

Formally, the submachine value-of-r behaves as described in Algorithm 4.22. When executing the
“for” loop of Line 7, it outputs α[j] if it belongs toB. Now if s := α[j] is a register, there are two cases:

▶ either s ∈ Rj for some j < i. In this case, value-of-rmakes a nested call to value-of-s.
▶ or s ∈ Ri. In this case, value-of-r simulates the computation of value-of-s by moving backward

without making a nested call, as explained in Lemma 4.36.

The head of the final k-marble transducer is built by using the various value-of-r to compute the
values of the registers which occur in the final output function.

4.3.4 From bounded to layered streaming string transducers

The goal of this section is to show Item (2)⇒ Item (3) in Theorem 4.34. Given (k,K)-bounded DSST
for someK ⩾ 0, we describe how to build an equivalent k-layered DSST.

It is known (see e.g. [AFT12]) that aK-boundedDSST can be transformed in an equivalent copyless
DSST. We first claim a stronger6 result in Lemma 4.40: the copyless DSST preserves the input positions
in which the output letters were created. Formally, origin semantics of aDSST is obtained by labelling the
letters stored within the registers by input positions, as we did for 2DT in Definition 1.26.

Definition 4.38 (Origin semantics for DSST)

Let S = (A,B,Q, q0, δ,R, ι, λ, τ) be a DSST. For all r ∈ R and u ∈ A∗, we let the value of r
in origin semantics after reading u be the word of (B × N)∗ defined by:

▶ if u = ε and α := ι(r), then the value is (α[1], 0) · · · (α[|α|], 0);
▶ if u = u′a, for all r ∈ R let αr be the value of r in origin semantics after reading u′. Let
s : R⊎B → (B⊎N)∗ be the function which maps r ∈ R toαr and b ∈ B to (b, |u|). The
value of r in origin semantics after reading u is s ◦ λ(δ∗(q0, u′), a).

The function f : A∗ → (B × N)∗ computed by S in origin semantics is defined accordingly,
where the letters occurring in τ(δ∗(q, u)) are labelled by |u|+1.

As for 2DT, the first component of f is simply the function computed by S .

Example 4.39 (Reverse)

The 2DT from Example 4.15 computes a1 · · · an 7→ (an, n) · · · (a1, 1) in origin semantics.

Now, we claim that origin semantics can be preserved when transforming aK-bounded DSST into
a copyless one. We postpone the proof of Lemma 4.40 to Part III of the current manuscript.

Lemma 4.40 (From bounded to copyless)

Given aK-bounded DSST, one can build a copyless DSST which computes the same function in
origin semantics. In particular, it computes the same function when forgetting origins.

Proof sketch. The proof goes over the proof of Section 9.3 which shows a similar result over
infinite words, but without dealing explicitly with origin semantics. We nevertheless argue in Sec-
tion 9.3.4.2 that origin semantics is in fact preserved by this transformation. ◀

6Even if the construction presented in [AFT12] is likely to preserve origin semantics, this result is not explicit. Therefore, we
are not aware of a way to directly use the result of [AFT12] as a blackbox for showing Item (2)⇒ Item (3) in Theorem 4.34.

Jump to contents

114 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

Now, let us show by induction on k ⩾ 1 that given a (k,K)-bounded DSST, one can build an
equivalent k-layered DSST, by using Lemma 4.40 for the induction step.

Consider a (k,K)-bounded DSST S = (A,B,Q, q0,R, ι, λ, τ) whose partition of registers is
R1, . . . ,Rk . We letR′ :=

⋃
1⩽i<k Ri. Without loss of generalities, we assume that τ has type Q →

(Rk ⊎B)∗ (it does not useR′). One can build several DSST from S :

▶ aK-boundedDSST Sk with registersRk and output alphabetR′⊎B. It consists in the machine
induced by S when updating only registers inRk and consideringR′ as letters;

▶ for all r ∈ R′, a (k−1,K)-bounded DSST Sr which is the machine induced byS onR′, whose
output function is always r. Thus it computes the value of r in S .

By induction hypothesis, for all r ∈ R′, one can build from Sr a (k−1)-layered DSST denoted Ur,
which computes the value of r in S . Furthermore, by Lemma 4.40 one can build a copyless DSST Uk

which computes the same function as Sk in origin semantics.

Now, consider the DSST obtained by merging Uk and Ur for r ∈ R′ (formally, we do the product
of their states and transition functions), using the output function of Uk , and replacing each mention
of r ∈ R′ in the updates of Uk by the according current output of Ur. This machine U is k-layered.
Furthermore, U computes the same function as S : the key argument is that Uk uses each r ∈ Rk

exacly in the same positions as Sk did, because origin semantics is preserved.

4.4 Solving the optimization problem for streaming transducers

The goal of this section is to showTheorem 4.41, which is the optimization statement of Chapter 4. This
result originates from [DFG20, Section 5]. It was already known for k = 1 in [FR17, Theorem 5.2].

Theorem 4.41 (Optimization of streaming string transducers)

Let f : A∗ → B∗ be computed by an DSST. For all k ⩾ 1, f can computed by a k-layered DSST
if and only if |f(u)| = O(|u|k). One can decide if such a k ⩾ 1 exists, compute the minimal one,
and in this case build a (k,K)-bounded (or k-layered)DSSTwhich computes f for someK ⩾ 1.

Proof sketch. We first transform in Section 4.4.1 a DSST computing f into a simple DSST, i.e.
which has no states and uses no letters apart in its initial function. If this machine has a (decidable)
property called barbell7, we show that there exist v0, u, v1 ∈ A∗ such that |f(v0uXv1)| = 2Ω(X),
thus f cannot be computed by a k-layered DSST. Otherwise, we find in Section 4.4.2 the minimal
k ⩾ 0 such that |f(u)| = O(|u|k) and build a (k,K)-bounded DSST which computes f . ◀

The rest of this section is devoted to a detailed proof of Theorem 4.41. As a side result, we obtain in
Claim 4.46 that if f : A∗ → B∗ is computed by a DSST, then the function |f | : A∗ → N, u 7→ |f(u)|
(which forgets everything but the length) is a rational series over the semiring (N,+,×). This is one of
the motivations for the detailed study of polyregular functions with output in Z orN in Part II.

4.4.1 From streaming string transducers toN-weighted automata

The goal of this section is to build aN-weighted automaton computing the size of the registers in a given
DSST. This statement is formalized in Claim 4.46 at the end of the section.

7The term dummbell is also used in the literature.

Jump to contents

4.4. SOLVING THE OPTIMIZATION PROBLEM FOR STREAMING TRANSDUCERS 115

4.4.1.1 Simple DSST. The first step is to make our machine as restricted as possible. We say that a
DSST S = (A,B,Q, q0, δ,R, ι, λ, τ) is simple if it has a single state (i.e. Q = {q0}), and its substitu-
tions and output do not use letters (i.e. λ : Q×A→ S∅R and F : Q→ R∗). To simplify the notations,
we write (A,B,R, ι, λ, F) for a simple DSST, where λ : A→ S∅R and τ ∈ R∗. Indeed, the states and
transition function are useless. It is easy to show8 that a DSST can always be simplified9.

Claim 4.42 (Simplification of DSST)

Given a DSST, one can build an equivalent simple DSST.

Proof idea. LetT = (A,B,Q, q0, δ,R, ι, λ, τ) be aDSST. We can assume that it uses no letters
in the substitutions by storing them in constant registers (using the initial function) indexed byB.
To remove the states, we letR′ := Q×R be our new register set. In our newmachine, the register
(q, r) will contain the value of r if q is the current state of T , and ε otherwise. ◀

4.4.1.2 Weighted automata. Given a simple DSST, we build a (N,+,×)-weighted automaton which
computes the size of the words stored in the registers along a run of theDSST. This correspondance will
enable to transfer the results on asymptotic growth of (N,+,×)-weighted automata to DSST.

Formally, a semiring (S,+,×) consists of a commutative monoid (S,+) and a monoid (S,×) such
that × distributes over + and the neutral for + is absorbing for ×. In this manuscript, semirings will
either be (N,+,×), (Z,+,×) or (Q,+,×), thus no deeper understanding of the theory of semirings is
required for the reader. Given finite setsS, T , we denote byMS,T (S) the set ofmatriceswith coefficients
in S and whose lines (resp. columns) are indexed by S (resp. T). Observe that MS,S(S) equipped with
matrix product is a monoid. Ifm,n ⩾ 0, we write Mm,n for M[1:m],[1:n].

Given a semiring (S,+,×), a (S,+,×)-weighted automaton (also known as (S,+,×)-automaton or
(S,+,×)-linear representation) is a machinemodel which computes a functionwith output in S. Starting
from the seminal results of Schützenberger in [Sch61a], weighted automata over various semirings have
been deeply investigated in the literature. They are are often considered as a quantitative counterpart of
finite automata. The reader is invited to consult e.g. the monograph [BR11] for a survey.

Definition 4.43 (S-weighted automaton)

An S-weighted automaton W := (A,Q, I, F, µ) consists of:

▶ an input alphabetA;
▶ a finite setQ of states;
▶ an initial (resp. final) vector I ∈ M1,Q(S) (resp. F ∈ MQ,1(S));
▶ a monoid morphism µ : A∗ → MQ,Q(S).

The function g : A∗ → S computed by W is defined by g(u) := Iµ(u)F for u ∈ A∗. The class of
functions computed by S-weighted automata, is called S-rational series.

Example 4.44 (Exponential)

The function u 7→ 2|u| is computed by a (N,+,×)-weighted automaton with initial vector
(
1
)
,

final vector
(
1
)
and morphism u 7→

(
2
)|u|.

8The reader is invited to observe that the construction does not preserve k-layeredness for some k ⩾ 1. In particular, being
copyless generally requires to uses states and letters in the substitutions.

9See [BDSW17] for a similar construction in the context of polynomial automata.

Jump to contents

116 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

Example 4.45 (Length)

The function u 7→ |u| is computed by a N-weighted automaton with initial vector
(
1 0

)
, final

vector
Å
1
0

ã
and morphism u 7→

Å
1 1
0 1

ã|u|
.

4.4.1.3 Flow automaton. Consider a simple DSST S := (A,B,R, ι, λ, τ) computing a function
f : A∗ → B∗. We let its flow automaton W be theN-weighted automaton (A,R, I, F, µ) defined by:

▶ for all r ∈ R, I[r] := |ι[r]| (number of letters initialized in r);
▶ for all r ∈ R, F [r] := |τ |r (number of occurrences of r in τ);
▶ for all a ∈ A, r, s ∈ R, µ(a)[r, s] := |λ(a)(s)|r (number of occurrences of r).

It is easy to see that W computes the length of the registers values in S .

Claim 4.46 (Flow automaton is correct)

For allu ∈ A∗ and r ∈ R, we have (Iµ(u))[r] = |JJrKKu|. In particular,W is aweighted automaton
which computes |f | : A∗ → N, u 7→ |f(u)|.

Without loss of generalities, we can assume that the flow automaton is trim (i.e. for all q ∈ Q, there
exist words u, v ∈ A∗ such that (Iµ(u))[q] ̸= 0 and (µ(v)F)[q] ̸= 0). Indeed, if r ∈ R is such that
(Iµ(u))[r] = 0 for all u ∈ A∗, then r always had value ε and thus could be removed everywhere in S .
Similarly, if (µ(v)F)[r] = 0 for all v ∈ A∗, then r was never used in the output.

4.4.2 Asymptotic growth ofN-weighted automata

Thanks to the flow automaton, we can focus on understanding the asymptotic growth of the functions
computed by N-automata. The constructions below are very similar to those used in [WS91] for com-
puting the degree of ambiguity of non-deterministic finite automata.

The first step towards deciding polynomial growth is to understandwhich syntactic propertiesmake
a function unbounded. The next lemma originates from [MS77] and [WS91, Theorem 6.1].

Lemma 4.47 (Patterns for unboundedness)

Let W := (A,Q, I, µ, F) be a trim N-automaton computing a function g : A∗ → N. Then
g(u) = O(1) if and only if W does not have the following patterns:

▶ a heavy cycle on a state q: a word u ∈ A∗ such that µ(u)[q, q] ⩾ 2;
▶ a barbell from p to q ̸= p: a word u ∈ A∗ such that µ(u)[p, p] ⩾ 1, µ(u)[p, q] ⩾ 1 and
µ(u)[q, q] ⩾ 1.

The shapes of heavy cycles and barbells are depicted in Figure 4.48 (when seeing automata as graphs).
It is well-known that the presence of a heavy cycle or a barbell between states can be decided. For the
barbell, given p ̸= q ∈ Q, the set of u ∈ A∗ such that µ(u)[p, p] ⩾ 1 is a regular language. The same
holds for µ(u)[p, q] ⩾ 1 and µ(u)[p, q] ⩾ 1. We finally check the emptiness of their intersection. For
the heavy cycle, given q ∈ Q, consider the (computable) set C of states p such that µ(v)[p, q] ⩾ 1 and
µ(v′)[q, p] ⩾ 1 for some v, v′ ∈ A∗. If there exist a ∈ A and q0, q1 ∈ C such that µ(a)[q0, q1] ⩾ 2,
there is a heavy cycle on q. Otherwise, µ(a)[q0, q1] ∈ {0, 1} for all q0, q1 ∈ C and there is a heavy cycle
on q if and only if the restriction of W toC (seen as a non-weighted automaton) is ambiguous.

Jump to contents

4.4. SOLVING THE OPTIMIZATION PROBLEM FOR STREAMING TRANSDUCERS 117

q

u, n ⩾ 2

(a) Heavy cycle on q

p q

u, n1 ⩾ 1

u, n2 ⩾ 1

u, n3 ⩾ 1

(b) Barbell from p to q ̸= p

Figure 4.48: Patterns that create unboundedness in a trimN-automaton.

It is easy to observe that heavy cycles directly lead to exponential behaviors.

Claim 4.49 (Heavy cycle⇒ lower exponential bound)

Let W := (A,Q, I, µ, F) be a trimN-automaton computing a function g : A∗ → N. If W has a
heavy cycle, there exist v0, u, v1 ∈ A∗ such that g(v0uXv1) = 2Ω(X).

Proof. If the heavy cycle isu ∈ A+ such thatµ(u)[q, q] ⩾ 2, observe thatµ(uX)[q, q] ⩾ 2X . ◀

Now, we show that the absence of heavy cycles implies that the function computed has polynomial
growth. Furthermore, the states of theN-automaton can be partitioned in a somehow layered way.

Lemma 4.50 (No heavy cycles⇒ polynomial growth)

Let W := (A,Q, I, µ, F) be a trim N-automaton computing a function g : A∗ → N. If W has
no heavy cycles, there exists a (unique) k ⩾ 0 such that the following holds:

▶ g(u) = O(|u|k);
▶ g(v0u

X
1 v1 · · · vk−1u

X
k vk) = θ(Xk) for some v0, u1, v1 . . . , uk, vk ∈ A∗.

This value k ⩾ 0 is computable and one can build a partitionQ =
⊎

0⩽i⩽kQi such that:

(1) for all p, q ∈ Q, if there exist q ∈ Q and u ∈ A∗ with µ(u)[p, q] ⩾ 1, then p ∈ Si, q ∈ Sj

with some i ⩽ j;
(2) for all 1 ⩽ i ⩽ k, p, q ∈ Si and u ∈ A∗, µ(u)[p, q] = O(1);
(3) for all 1 ⩽ i ⩽ k and q ∈ Si, (Iµ(u))[q] = O(|u|i).

Proof. Themain idea is to regroup the states ofW betweenwhich there are no barbells, since they
should describe “bounded” portions of the automaton.

We first build an directed graph G which describes the barbells that we can meet. Its vertices
are the statesQ, and there is an edge from q0 to q1 if and only if there exist p0 ̸= p1 ∈ Q such that:
▶ ∃v0, v1 ∈ A∗ such that µ(v0)[q0, p0] ⩾ 1 and µ(v1)[p1, q1] ⩾ 1;
▶ there is a barbell from p0 to p1.

We claim that the absence of heavy cycles in W forces the graph G to have no cycles.

Claim 4.51 (Barbell graph is acyclic)

The graph G is a directed acyclic graph (i.e. it has no cycles).

Proof. Assume that there exists a cycle (q0, q1)(q1, q2) . . . (qn−1, q0) in G. By transitivity of
the construction, there existsw ∈ A∗ such thatµ(w)[q0, qn−1] ⩾ 1. Furthermore there exist
p ̸= p′ ∈ Q and v, v′ ∈ A∗ such that µ(v)[qn−1, p] ⩾ 1 and µ(v′)[p′, q0] ⩾ 1, and there
is a barbell from p to p′. Thus there is u ∈ A∗ such that µ(u)[p, p] ⩾ 1, µ(u)[p, p′] ⩾ 1
and µ(u)[p′, p′] ⩾ 1, hence µ(uu)[p, p′] ⩾ 2. Putting everything together, we obtain a heavy
cycle since µ(wvuuv′)[q0, q0] ⩾ 2, which yields a contradiction. ◀

Jump to contents

118 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

SinceG is acyclic, one can define itsminimal stateswhich have no incoming edges. Furthermore,
given a state q ∈ Q, we define its height as the maximal length of a path going from a minimal state
to q (minimal states having height 0). We denote by k the maximal height over all states, we first
show that it provides a lower bound on the degree of a polynomial bounding g.

Claim 4.52 (Lower polynomial bound)

There exist v0, u1, v1 . . . , uk, vk ∈ A∗ such that g(v0uX1 v1 · · · vk−1u
X
k vk) = Ω(Xk).

Proof. By definition of k, one can find states q1 ̸= q′1, . . . , qk ̸= q′k ∈ Q such that:
▶ for all 1 ⩽ i ⩽ k, there exists ui ∈ A∗ such that µ(ui)[qi, qi] ⩾ 1 and µ(ui)[qi, q′i] ⩾ 1

and µ(ui)[q′i, q′i] ⩾ 1;
▶ for all 1 ⩽ i < k, there exists vi ∈ A∗ such that µ(vi)[q′i, qi+1] ⩾ 1.

Now, observe that µ(uX1 v1 · · · vk−1u
X
k)[q1, q

′
k] ⩾ Xk . Since the N-automaton is trim, one

can find v0, vk ∈ A∗ such that g(v0uX1 v1 · · · vk−1u
X
k vk) ⩾ Xk . ◀

Finally, we consider the partitionQ0, . . . , Qk ofQ, whereQi is the set of states of height i. It
remains to show that |g(u)| = O(|u|k) and check the last properties of Lemma 4.50.

Claim 4.53 (Layered registers)

The following statements hold:

(1) for all 0 ⩽ i ⩽ k and p ∈ Qi, if there exist q ∈ Q andu ∈ A∗ such thatµ(u)[p, q] ⩾ 1,
then p ∈ Qj for some i ⩽ j.

(2) for all 0 ⩽ i ⩽ k and p, q ∈ Qi, µ(u)[p, q] = O(1);
(3) for all 0 ⩽ i ⩽ k, for all ∀p, q ∈

⋃
j⩽iQj , µ(u)(p, q) = O(|u|i).

Proof.
(1) Assume that µ(u)[p, q] ⩾ 1, then every path in G from a minimal state s to p of length

0 ⩽ i ⩽ k can be completed in a path from s to q (of length at least i).
(2) Due to Item (1), the non-empty terms in the sum that defines µ(u)[p, q] are indexed by

states of Qi. Thus it is sufficient to show that the sub-automaton "induced" on Qi is
bounded, i.e. that is has no barbells by Lemma 4.47. This is indeed not possible, since
otherwise the states ofQi would not have the same height in G.

(3) The result is shown by induction on 0 ⩽ i ⩽ k. We deal with i = k. Let S =
⋃

j<kQj ,
T := Qj and µS : A

∗ → NS×S , u 7→ (µ(u)[p, q])p∈S,q∈S be the co-restriction of µ to
S×S. We define similarly µT : A∗ → NT×T and µS,T : A∗ → NS×T .
It follows from Item (1) that for all u ∈ A∗, µ(u) has an upper triangular form:

µ(u) =

Å
µS(u) µS,T (u)

0 µT (u)

ã
and by matrix product we get:

µS,T (u) =
∑

1⩽i⩽|u|

µS(u[1:(i−1)])µS,T (u[i])µT (u[(i+ 1):|u|]).

Using induction hypothesis, we show that each value of this matrix is inO(|u|k). ◀

Finally, the partitionQ0, . . . , Qk can be computed since the presence of a barbell between two
states can be decided (as mentioned after Lemma 4.47). ◀

Jump to contents

4.5. DISCUSSION: RECURSION FOR OTHERMODELS 119

As a consequence, the converse of Claim 4.49 holds and one can decide if a function g computed by
aN-weighted automaton is such that g(u) = O(|u|k) for some k ⩾ 0.

4.4.3 Asymptotic growth in a DSST

Through the flow automaton, this above procedure can be transferred from N-weighted automata to
simple DSST. It remains to show that when this property holds, one can build an equivalent (k,K)-
bounded DSST. However, if S := (A,B,R, ι, λ, τ) is a DSST computing a function f : A∗ → B∗

such that |f(u)| = O(|u|k), then Lemma 4.50 partitions its registers in k+1 layers. In fact, the registers
from the first layer only contain bounded values, hence they can be removed up to adding states.

Claim 4.54 (Building a bounded DSST)

Given a simple DSST whose flow automaton verifies the condition of Lemma 4.50 with k ⩾ 1,
one can build an equivalent (k,K)-bounded DSST for someK ⩾ 0.

Proof. Let S := (A,B,R, ι, λ, τ) be the simple DSST and R0, . . . ,Rk be the partition of R
given by Lemma 4.50. By Item (2), there exists L ⩾ 0 such that |JJrKKu| ⩽ L for all x ∈ R0

and u ∈ A∗. Thus one can remove the registers R0 and hardcode the content of each r ∈ R0

in the states. The transition function is defined accordingly. The new update function is defined
by replacing the mention of r ∈ R0 by its bounded content (which can be determined using the
current state). The resulting DSST is (k,K)-bounded by Items (1) and (2) of Lemma 4.50. ◀

Claim 4.54 concludes the construction of a (k,K)-bounded DSST.

4.5 Discussion: recursion for other models

In Definition 4.7, we changed our point of view on nested 2DT, by enabling recursion. It is thus very
natural to ask what happens when enabling recursion for pebble transducers, blind pebble transducers
and last pebble transducers. In this section, we discuss the relevance of such extensions.

A first observation is that, contrary to recursive marble transducers, recursion for these models has
no reason to be well-founded since the size of the input does not decrease strictly when making a call.
For blind pebble transducers, the situation is even worse: the input is exactly the same when making a
recursive call. Thus, if the same submachine is used twice in the recursion stack of a recursive blind pebble
transducer, the calls will loop forever. All in all, it does not make sense to define recursive blind pebble
transducers, except if they have no recursion, but in this case they are simply blind pebble transducers.

When trying to define recursive pebble transducers through Definition 1.36, we first observe that since
the input alphabet is enriched at each nested call, one would need arbitrarily large input alphabets to
enable unbounded recursion stacks. This is not satisfying since the definition of the machine may be-
come infinite. A solution to overcome this issue is to use only a finite number of “colors” for the pebbles,
and allow a submachine to see the colors of the pebbles dropped in some position, but not their number
(the case of a single color is in fact mentioned in Section 1.3.2.5 for pebble transducers). However, this
model would not preserve regular languages by inverse images, contrary to pebble transducers (Propos-
ition 1.41) and recursive marble transducers (Proposition 4.10), as explained in Example 4.55.

Jump to contents

120 CHAPTER 4. STREAMING COMPUTATIONS ANDMARBLE TRANSDUCERS

Example 4.55 (Recursive pebble transducer)

Let A := {a, b}. The indicator function of the (non-regular) language {anbn | n ⩾ 0} can be
computedby a recursive pebble transducerwhichmakes recursive calls in positions1, 2n, 2, 2n−1, . . . ,
until it reaches the middle of the word.

As a consequence, recursive pebble transducers are farmore expressive than all themodels described
in Part I. We believe that its study is out of reach (and even out of scope) for automata theory.

Recursive last pebble transducers can be defined in a easier way, since only one pebble is visible at any
time of the computation. This model was in fact introduced over trees in [EHS07, Section 2]. It provides
a natural generalization of recursive marble transducers. It follows from [EHS07, Theorem 5]10 that it
preserves regular languages by inverse image (which generalizes Proposition 4.10). We believe that re-
cursive last pebble transducers are a valuable object of study in our context. In particular, Conjecture 4.56
claims that they can be optimized, which generalizes11 Theorem 4.12.

Conjecture 4.56 (Optimization of recursive last pebble transducers)

A function f : A∗ → B∗ computed by a recursive last pebble transducer can be computed by a
last pebble transducer if and only if |f(u)| = O(|u|k) for some k ⩾ 0. This result can be shown
by adapting the techniques of Chapter 3 and the construction is effective.

If Conjecture 4.56 holds, the function inner-squaring cannot be computed by a recursive last pebble
transducer because of Theorem 1.48 (the proof argument is same as in Proposition 3.14). As a con-
sequence, it seems that recursive last pebble transducers do not capture the whole class of polyregular
functions. A generic model which subsumes both recursive last pebble transducers and pebble trans-
ducers is presented in [EHS07, Section 2]. It consists in allowing a bounded number k of pebbles to be
always visible within the unbounded recursion stack of a recursive last pebble transducer. This extended
model preserves regular languages by inverse images (see again [EHS07, Theorem 5]).

10This result is in fact shown for tree languages. Interestingly, the author is not aware of a way to adapt the proof to words
languages without using trees as an intermediate model.

11However, the proof techniques of Chapter 4 do not seem to be relevant in this context, since they are very specific to streaming
string transducers. We believe that the techniques of Chapter 3 are more versatile.

Jump to contents

Part II

Class membership problems for
commutative outputs

Chapter 5

Polyregular functions with
commutative outputs

L’ordre est le plaisir de la raison: mais le désordre est le délice de
l’imagination.

Paul Claudel, Le soulier de satin

In Part I we have studied word-to-word transductions, i.e. functions of typeA∗ → B∗ computed by
transducers which concatenate output words fromB∗ when making their transitions. The mainspring
of Part II is to study what happens when replacing the free monoidB∗ by some (infinite) commutative
monoid S, which defines functions of typeA∗ → S. In this setting, the key observation is that the order
in which the output is produced no longer has importance, due to commutativity.

We shall mainly focus on the cases S := N (which corresponds to word-to-word functions with
unary output alphabet) and S := Z. The main goal of Chapter 5 is to provide optimization results for
pebble transducers with output in S, similar to the results of Chapters 3 and 4. Furthermore, we shall
see that they describe robust and natural classes of functions from finite words to integers.

Z-RATIONAL SERIES

N-RATIONAL SERIES

Z-POLYREGULAR

N-POLYREGULAR
...

Npoly2

Npoly1

Npoly0
Zpoly0

Zpoly1

Zpoly2

⋃
k⩾1O(nk)

O(n2)

O(n)

O(1)

u 7→ (−2)|u|

map-power3 : 0
n1# · · ·#0nm 7→

∑m
i=1 n

3
i

u 7→ (|u|a−|u|b)2 for a ̸= b ∈ A

poly-parity1 : u 7→ (−1)|u| × |u|

1L : A∗ → {0, 1} for L regular

Figure 5.1: Classes of functions studied in Chapter 5 with S := Z orN.

124 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Given a commutative monoid S, we define in Section 5.1 the class of S-polyregular functions as the
class of functions computed by pebble transducers with output in S. We show that it coincides with the
class of functions computed by marble transducers or last pebble transducers with output in S (which is
a major difference with the case of word-to-word functions). Furthermore, we describe another equi-
valent model called counting transducers, which simplifies pebble transducers with output in S thanks to
commutativity. This model is roughly the same as Schützenberger’s finite counting automata [Sch62].

For S := Z or N, we claim in Section 5.2 that S-polyregular functions describe a robust subclass of
(S,+,×)-rational series1. Furthermore, we provide an optimization result for S-polyregular functions,
by showing that f : A∗ → S computed by a k-pebble transducer can be computed by a ℓ-pebble trans-
ducer for a given 1 ⩽ ℓ ⩽ k if and only if2 |f(u)| = O(|u|ℓ). This property is depicted in Figure 5.1
and all conversions between the models are effective. As a consequence, the lack of correspondence
between asymptotic growth and number of nested layers for word-to-word polyregular functions (re-
call Section 1.3.4) is exclusively related to the (non-commutative) word combinatorics of the output.

The proof of the optimization result goes over Sections 5.3 to 5.5. The case S := N already follows
from the equivalence with marble transducers and the results of Chapter 4. However, the case S := Z
is more complex since the presence of negative integers enables to “remove” portions of the output, and
thus it can make the asymptotic growth lower than expected. Therefore the author is not aware of a way
to adapt the proof of Chapter 4 in this setting, and we instead leverage the tools from Chapters 2 and 3.
These techniques also provide a stepping stone towards the more involved proof of Chapter 6.

Finally, wediscuss in Section5.6 partial results for the classmembership problem fromZ-polyregular
functions toN-polyregular functions, which is open to the knowledge of the author.

The contributions presented in this chapter are based on the proof techniques of [Dou21, Dou22]
and on part of the results of [CDL23].

5.1 Polyregular functions with commutative output

The goal of this section is to introduce the class of polyregular functionswhich have output in an (infinite)
commutative monoid S. In this setting, we shall obtain a simpler description than with pebble trans-
ducers: the main idea is that since the output is commutative, the ordering in which the reading heads
are moved has no importance, and one-way moves are in fact sufficient (see Algorithm 5.13).

5.1.1 Pebble transducers with commutative output

Let (S,+) be a (possibly infinite) commutative monoid. We define S-polyregular functions as a class of
functions of type A∗ → S where A is a finite alphabet. In the case S = N, the goal is to capture the
functions f : A∗ → N such that the function g : A∗ → {1}∗, u 7→ 1f(u) is polyregular. In the case
S = Z, we want to capture the functions f : A∗ → Zwhich are obtained by summing the output letters
of a polyregular function g : A∗ → {±1}∗. More generally, we let S∗ be the set of finite words over S.

Definition 5.2 (S-polyregular functions)

The class of S-polyregular functions is the class of functions of shape sum ◦ g : A∗ → S where
g : A∗ → S∗ is polyregular3 and sum : S∗ → S is the sum operation in S.

1In the literature, rational series over other semirings such as (Z ∪ {∞},min,+) have also been studied. We shall not deal
with such series in this manuscript, and it is well-known that such classes are incomparable with (Z,+,×)-rational series.

2Here | · | denotes at the same time the absolute value of an integer and the size of a word.

Jump to contents

5.1. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT 125

We denote by Spoly the class of S-polyregular functions. More precisely, for all k ⩾ 1, we denote by
Spolyk the class of functions of shape sum ◦ g : A∗ → S where the function g : A∗ → S∗ is computed
by a k-pebble transducer. We let Spoly0 be the class of functions f : A∗ → S whose image f(A∗) is
finite and such that f−1({δ}) is a regular language for all δ ∈ S. We also let Spoly−1 be the singleton set
which contains the constant function u 7→ 0 where 0 denotes the neutral element of the commutative
monoid (S,+). Observe that Spolyk ⊆ Spolyk+1 for all k ⩾ −1.

Example 5.3 (Counting letters)

Let k ⩾ 0 and a1, . . . , ak ∈ A. Let nba1,...,ak
: A∗ → N be the function which maps u to

|u|a1
× · · · × |u|ak

. It belongs to Npolyk since a k-pebble transducer can use its k layers to find
all the tuples of positions (i1, . . . , ik) of its input which are labelled by (a1, . . . , ak).

Example 5.4 (Map power)

Let k ⩾ 0 andA := {0,#}. Let map-powerk : A
∗ → N be the function which maps an input of

shape 0n1# · · ·#0nm ∈ A∗ to
∑m

i=1 n
k
i . This function belongs toNpolyk .

Example 5.5 (Polynomial parity)

Let poly-parityk : A
∗ → Z be the function mapping u to (−1)|u|× |u|k . This function belongs to

Zpolyk thanks to a k-pebble transducer which produces an output either in {+1}∗ or {−1}∗.

Now we suggest in Claim 5.6 that S-polyregular functions are essentially trivial when S is finite. In
the rest of Part II, we shall mainly focus on the cases S = N and S = Z.

Claim 5.6 (Finite monoids)

If S is a finite commutative monoid, then Spoly = Spoly0.

Proof idea. It is sufficient to show that for all k ⩾ 0, f ∈ Spolyk and δ ∈ S, f−1({δ}) is a regular
language. This result is shown by induction on k ⩾ 0 when starting from a k-pebble transducer.
The induction step is similar to the argument of Section 1.3.2.2 for showing that pebble transducers
with non-total submachines compute functions whose domain is regular. ◀

Observe that one can shift closure properties from polyregular to S-polyregular functions.

Proposition 5.7 (Pre-composition by regular functions)

For all k ⩾ 0, the class Spolyk is (effectively) closed under pre-composition by regular functions.

Proof. The result for k = 0 follows from the fact that regular functions preserve regular languages
by inverse images. For k ⩾ 1, we rely on Theorem 1.43 which implies that the class of functions
computed by k-pebble transducers is closed under pre-composition by regular functions. ◀

3In Chapter 1, we have defined polyregular functions of typeA∗ → B∗ whenB is finite. Here S is not finite in general, thus
we formally consider polyregular functions of typeA∗ → F ∗ where F is a finite subset of S.

Jump to contents

126 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

5.1.2 Counting transducers

Nowwe describe a simple computationmodel named counting transducers, which capturesS-polyregular
functions. It will be used to show the main results of Chapters 5 and 6.

If A is an alphabet, we denote by RegPropk(A) the set of regular languages over A × {0, 1}k . The
idea is to encode distinguished positions within the boolean components. If L ∈ RegPropk(A), we
define the counting function#L : A∗ → N as follows for u ∈ A∗ (recall that for 1 ⩽ i ⩽ |u|, the word
u•i ∈ (A× {0, 1})∗ is defined as (u[1], 0) · · · (u[i−1], 0)(u[i], 1)(u[i+1], 0) · · · (u[|u|], 0)):

#L(u) := |{(i1, . . . , ik) ∈ [1:|u|]k | u•i1•i2 · · · •ik ∈ L}|.

Informally, such a function describes the number of assignments4 of k pebbles dropped on input u,
while verifying the regular property L. Since other inputs are not used, one can assume without losing
generalities that any word v ∈ L has shape u•i1•i2 · · · •ik for 1 ⩽ i1, . . . , ik ⩽ |u|.

Example 5.8 (Indicator functions)

If L ∈ RegProp0(A), then #L is the indicator function 1L : A
∗ → {0, 1} of the language L

(which is a regular property).

Example 5.9 (Map power)

One can buildL ∈ RegPropk(A) such that#L = map-powerk , bymakingL check if thekmarked
positions belong to the same 0ni factor.

We present the computation model of counting transducers, which relies on the #L functions. It
is inspired by the finite counting automata which were introduced by Schützenberger in [Sch62]. An
equivalent definition is presented in [CDL23] by using a logical formalism5.

Definition 5.10 (Counting transducer)

Let k ⩾ 0. A k-counting transducer T = (A,S, (δi, Li)1⩽i⩽n) consists of:

▶ an input alphabetA and an output commutative monoid S;
▶ a finite sequence (δi, Li)1⩽i⩽n of production pairs with δi ∈ S and Li ∈ RegPropk(A∗).

The semantics of the k-counting transducerT is defined as follows. First, the commutativemonoid
(S,+) can be equipped with a product operation S×N→ S : (δ, n) 7→ δ ·n := δ + · · ·+ δ (n times).
Given a function g : A∗ → N and δ ∈ S, one can define the function δ · g : A∗ → S which maps u to
δ · g(u). The function computed by T is defined as

∑n
i=1 δi ·#Li.

Example 5.11 (Spoly0)

The class Spoly0 coincides with the class of functions computed by 0-counting transducers. It
contains the functions

∑n
i=1 δi · 1Li

where δi ∈ S and Li ⊆ A∗ is regular for all 1 ⩽ i ⩽ n.

4Given a languageL ∈ RegPropk(A), one can build amonadic second-order formula (MSO formula for short)φ(x1, . . . , xk)
where x1, . . . , xk are free first-order variables, such that#L(u) is the number of assignments x1, . . . , xk which make φ true
in the model u ∈ A∗ (see e.g. [Tho97]). This formalism is equivalent to ours, but we chose not to use it.

5In [CDL23], the counting transducers are built by using MSO formulas with free variables instead of languages of RegProp .
They can therefore be seen as a particular case of the MSO interpretations from [BKL19]. Once more, we chose not to use this
equivalent formalism, since we never deal with logic in this manuscript.

Jump to contents

5.1. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT 127

Example 5.12 (Polynomial parity)

Let 1odd (resp. 1even) be the indicator function of words of odd (resp. even) length. For all k ⩾ 0
and u ∈ A∗, we have poly-parityk(u) = 1even(u) × |u|k − 1odd(u) × |u|k . This function can
therefore be computed by a k-counting transducer with two production pairs.

Observe that a k-counting transducer can be seen as an algorithmwith k nested (one-way) for loops,
as described in Algorithm 5.13 for k = 3 (and n = 2). When reaching the most inner loop, it selects
an output depending on a regular property of the input in which the position of the loop indices are
marked. In other words, a k-counting transducer can be seen as some kind of bimachine with k pebbles.

Algorithm 5.13: Implementation of a 3-counting transducer with nested loops.
1 for i1 in [1:|u|] do
2 for i2 in [1:|u|] do
3 for i3 in [1:|u|] do
4 if u•i1•i2•i3 ∈ L then
5 Output δ
6 end
7 if u•i1•i2•i3 ∈ L′ then
8 Output δ′
9 end

10 end
11 end
12 end

Note that if k ⩾ 1 and L ∈ RegPropk(A) then #L(ε) = 0. Therefore, if f is computed by a
k-counting transducer, then f(ε) is the neutral element of S. We shall freely assume that f(ε) can be
chosen as any element of S, up to adding a specific output. Under this assumption, it is easy to see that
for all 0 ⩽ ℓ ⩽ k, a k-counting transducer can always simulate an ℓ-counting transducer.

5.1.3 Equivalence between pebbles, marbles and counting

In this section our goal is to (easily) show that the class of functions computed by counting transducers
with output S is exactly the class of S-polyregular functions. In the context of commutative outputs, we
also deduce that pebble and marble transducers have the same expressive power.

Let us first note that the languages L ∈ RegPropk(A) can be normalized in a left-to-right fashion.

Claim 5.14 (Normalization of counting functions)

Let k ⩾ 0 and L ∈ RegPropk(A). One can build L1, . . . , Ln ∈
⋃

ℓ⩽k RegPropℓ(A) such that:

▶ #L = #L1 + · · ·#Ln;
▶ for all 1 ⩽ j ⩽ n, if Lj ∈ RegPropℓ(A) and u•i1•i2 · · · •iℓ ∈ Lj then i1 < · · · < iℓ.

Proof idea. SplitL in disjoint languages depending on the relative positions of the i1, . . . , ik . ◀

Now we are ready to show Theorem 5.15. This easy result originates from [Dou21, Corollary 4.5]6
for the case of S = N and from [CDL23, Proposition II.11] for S = Z.

6This corollary from [Dou21] in fact relies on [Dou21, Lemma 4.4], which shows a stronger result for nested DSST.

Jump to contents

128 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Theorem 5.15 (Pebble = Marble = Counting)

Let S be a commutative monoid. Given f : A∗ → S and k ⩾ 1, the following are equivalent:

(1) f = sum ◦ g for g : A∗ → S∗ computed by a k-pebble transducer (i.e. f ∈ Spolyk);
(2) f = sum ◦ g for g : A∗ → S∗ computed by a k-marble transducer;
(3) f is computed by a k-counting transducer.

The conversions are effective.

Proof. Item (2)⇒ Item (1) is trivial. For Item (1)⇒ Item (3), we consider a k-pebble transducer
P which computes a function g : A∗ → S∗. To simplify the notations, we assume that P has
shape T1⟨T1 · · · ⟨Tk⟩⟩ (i.e. it consists in a single branch). In this case:
▶ for all 1 ⩽ j ⩽ k−1, the 2DT Tj has shape (A× {0, 1}j−1,Tj+1, Qj , qj,0, Fj , δj , λj);
▶ the 2DT Tk has shape (A× {0, 1}k−1,S, Qk, qk,0, Fk, δk, λk).

Since T1, . . . ,Tk are normalized, they produce at most one letter at each transition. By using
the transition monoids, one can build for all q1, . . . , qk ∈ Q1 × · · · × Qk , a regular language
Lq1,...,qk,δ ∈ RegPropk(A) such that u•i1•i2 · · · •ik ∈ Lq1,...,qk,δ if and only if:
▶ for all 1 ⩽ j ⩽ k, the configuration (qj , ij) occurs in the accepting n-run of Tj labelled by
u•i1•i2 · · · •ij−1 (in other words, (qj , ij) ∈ crossu•i1•i2···•ij−1

Tj
({ij}));

▶ 1 ⩽ j ⩽ k−1, λj(qj , u[ij]) = Tj+1 and λk(qj , u[ij]) = δ ∈ S.
Finally, we build a k-counting transducer whose pairs are the (Lq1,...,qk,δ, δ). Since S is commut-
ative, it is easy to see that this k-counting transducer computes sum ◦ g.

For Item (3)⇒ Item (2), we first show the following result by leveraging Claim 5.14.

Claim 5.16 (Marbles for basic counting functions)

Let k ⩾ 1 andL ∈ RegPropk(A). One can build a k-marble transducer which computes the
function of typeA∗ → {1}∗ mapping u ∈ A∗ to 1#L(u).

Proof idea. Thanks to Claim 5.14 (and up to simulating the execution of several marble
transducers), one can assume that whenever u•i1•i2 · · · •ik ∈ L then i1 < i2 < · · · < ik .
Let µ : A×{0, 1}k →M be a morphism into a finite monoid which recognizesL. The head
T of our k-marble transducer behaves as follows on input u ∈ A∗: for all 1 ⩽ i ⩽ |u|, it
makes a nested call to in position i to a submachine Tm where:

m := µ((u[i], 0, . . . , 0, 1)(u[i+1], 0, . . . , 0, 0) · · · (u[|u|], 0, . . . , 0, 0)).

Intuitively, this operation corresponds to givingm as an argument of the submachine, so that
it keeps track of the portion of the input that it can no longer see. The nested calls are built in a
inductive similar fashion. Finally, a leaf submachine uses lookarounds and the aforementioned
monoid information to determine if its current position together with the positions of the
nested calls describe positions i1 < · · · < ik such that u•i1•i2 · · · •ik ∈ L. ◀

Now let us consider a k-counting transducer whose pairs are (δi, Li) for 1 ⩽ i ⩽ n. For
all 1 ⩽ i ⩽ n, we apply Claim 5.16 in order to build a k-marble transducer Mi which computes
u 7→ 1#Li(u). By replacing each output word 1n by δi ·n ∈ S, one can build a k-marble transducer
Mi which compute some gi : A∗ → S∗ such that δi ·#Li = sum◦gi. Finally, we build a k-marble
transducer which sequentially simulates the transducers Mi for 1 ⩽ i ⩽ n. ◀

As an immediate consequence of Theorem 5.15, note that for k ⩾ 1we have f ∈ Spolyk if and only
iff = sum ◦ g for some g : A∗ → S∗ computed by a last k-pebble transducer. We shall see in Chapter 6
that this result does not hold for blind pebble transducers.

Jump to contents

5.2. RATIONAL SERIES ANDMEMBERSHIP PROBLEMS 129

If F is a class of functions of typeA∗ → N, we define SpanS(F) := {
∑

i δi · fi | δi ∈ S, fi ∈ F}.
A synthetic reformulation of Theorem 5.15 is given by Corollary 5.17.

Corollary 5.17 (Linear combinations)

For all k ⩾ 0, Spolyk = SpanS({#L | L ∈ RegPropk}).

Proof. Use Item (1)⇔ Item (3) in Theorem 5.15. ◀

5.2 Rational series and membership problems

We have observed in Chapter 4 that the class of functions of type A∗ → {1}∗ computed by k-marble
transducers is was (up to identifying 1n with n ∈ N) the class of (N,+,×)-rational series f : A∗ → N
such that f(u) = O(|u|k). Thanks to Theorem 5.15, this class of functions is exactly Npolyk . As a
consequence, one can minimize the number k of layers which is needed to compute such a function.

The goal of Section 5.2 is to discuss in more detail the connection betweenN-polyregular functions
and (N,+,×)-rational series and to generalize it to Z-polyregular functions and (Z,+,×)-rational
series. Furthermore, we also provide an optimization result for Z-polyregular functions and show that
the asymptotic growth of a function is connected to the minimal number of layers needed to compute
it. We are not aware of a way to adapt the techniques of Chapter 4 (which use weighted automata) to the
semiring (Z,+,×), therefore we shall rely on factorization forests instead.

5.2.1 Combinators for rational series

Let S := Z orN. It is well-known since Schützenberger that the class of (S,+,×)-rational series intro-
duced in Definition 4.43 (often S-rational series in the following) can be described using the indicator
functions 1L of regular languages L ⊆ A∗ and basic combinators, in the spirit of regular expressions.
Given f, g : A∗ → S and δ ∈ S, we define the following combinators:

▶ the external product δ · f : u 7→ δ × f(u);
▶ the sum f + g : u 7→ f(u) + g(u);
▶ the Hadamard product f × g : u 7→ f(u)× g(u);
▶ the Cauchy product f⊗g : u 7→

∑
u=vw f(v)× g(w);

▶ if and only if f(ε) = 0, the Kleene star f∗ :=
∑

n⩾0 f
n where f0 : ε 7→ 1, u ̸= ε 7→ 0 is neutral

for Cauchy product and fn+1 := f⊗fn.
The characterization of S-rational series is recalled in Theorem 5.18 (see [BR11, Theorem 7.1 p 17]).

Theorem 5.18 (Regular expressions for rational series)

Let S := Z or N. The class of S-rational series is the smallest class of functions of type A∗ → S
which contains the indicator functions of regular languages and is closed under external products,
sums, Cauchy products and Kleene stars. Furthermore, it is closed under Hadamard products.

It is easy to see from Corollary 5.17 that the class of S-polyregular functions is closed under taking
Cauchy products and Hadamard products, as claimed in Lemma 5.19.

Jump to contents

130 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Lemma 5.19 (Closure properties of S-polyregular functions)

Let S := Z or N. The class of S-polyregular functions is closed under Cauchy products and
Hadamard products. More precisely, if f ∈ Spolyk and g ∈ Spolyℓ, then f⊗g ∈ Spolyk+ℓ+1 and
f × g ∈ Spolyk+ℓ. The constructions are effective.

Proof. For all f, g, h : A∗ → S and γ, δ ∈ Z, we have (γ · f + δ · g)⊗h = γ · (f⊗g)+ δ · (g⊗h)
and(γ · f + δ · g)× h = γ · (f × g) + δ · (g × h). Therefore, it is sufficient to show the results
when f = #L and g = #R with L ∈ RegPropk(A) andR ∈ RegPropℓ(A).

We only deal with the (most difficult) case of the Cauchy product. For all u ∈ A∗ we have:

(#L⊗#R)(u) =
∑

0⩽i⩽|u|

∑
1⩽i1,...,ik⩽i

∑
i<j1,...,jℓ⩽|u|

1(u[1:i])•i1•···∈L × 1(u[i+1:|u|])•j1•···∈R

= #L(ε)×#R(u)

+
∑

1⩽i⩽|u|

∑
1⩽i1,...,ik⩽i

∑
i<j1,...,jℓ⩽|u|

1(u[1:i]•i1)•···∈L × 1(u[i+1:|u|])•(j1−i)•···∈R︸ ︷︷ ︸
=#S(u)

where S ∈ RegPropk+ℓ+1(A) is such that for all u ∈ A∗ and 1 ⩽ i1, . . . , ik, j1, . . . , jℓ, i ⩽ |u|,
u•i1• · · · •ik•j1• · · · •jℓ•i ∈ S holds if and only if the conditions 1 ⩽ i1, . . . , ik ⩽ i,
i < j1, . . . , jℓ ⩽ |u|, (u[1:i])•i1• · · · ∈ L and (u[i+1:|u|])•(j1 − i)• · · · ∈ R hold. ◀

However, we note in Example 5.20 that S-polyregular functions are not closed under Kleene stars.

Example 5.20 (Kleene star)

The function power-2 : u 7→ (−2)|u| is notZ-polyregular since |power-2(u)| ≠ O(|u|k) for some
k ⩾ 0. However, power-2 = ((−3) · 1A+)∗ and (−3) · 1A+ is Z-polyregular.

As a consequence of Lemma 5.19, if L ⊆ A∗ is regular and f ∈ Spolyk , then 1L⊗f ∈ Spolyk+1.
Lemma 5.21 states that such functions actually generate the whole space Spolyk+1.

Lemma 5.21 (Inductive construction of S-polyregular functions)

Let S := Z orN. For all k ⩾ 0, the following equality holds and the conversions are effective:

Spolyk+1 = SpanS({1L⊗f | L regular language, f ∈ Spolyk}).

Proof. As in the proof of Lemma 5.19, it is sufficient to show that#S for S ∈ RegPropk+1(A)
can be written as a linear combination of 1L⊗f whereR is regular and f ∈ Spolyk . By Claim 5.14
and since 1{ε}⊗f = f for all f : A∗ → S, one can assume that if u•i1· · ·•ik ∈ S then i1 < i2 <
· · · < ik . Let µ : A × {0, 1}k → M be a morphism into a finite monoid which recognizes L.
It is easy to check that one can build Lm ∈ RegProp0(A) and Rm ∈ RegPropk(A) form ∈ M
such that #L(u) =

∑
m∈M

∑
1⩽i1⩽|u| 1Lm

(u[1:i1]) × #Rm(u[i1+1:|u|]) for all u ∈ A+. If
we enforce ε ̸∈ Lm for allm ∈M , this equation can be transformed into a Cauchy product. ◀

Jump to contents

5.2. RATIONAL SERIES ANDMEMBERSHIP PROBLEMS 131

5.2.2 S-polyregular functions as S-rational series

Now, we are ready for S := Z or N to characterize the class of S-polyregular functions as a subclass of
(S,+,×)-rational series. Theorem 5.22 is presented in [Dou22, Theorem 3.3] for N-polyregular func-
tions and in [CDL23, Theorem II.18] for Z-polyregular functions. Both proofs are not self-contained
and rely on classical results on S-rational series that we shall not detail in this manuscript. From now
on, | · | is used to denote both the size of a word and the absolute value of an integer.

Theorem 5.22 (S-polyregular functions as S-rational series)

Let S := Z orN. Given f : A∗ → S, the following conditions are equivalent:
(1) f is S-polyregular;
(2) f is a S-rational series and |f(u)| = O(|u|k) for some k ⩾ 0;
(3) f belongs the smallest class of functions of typeA∗ → S containing the indicator functions

of regular languages, and closed under external products, sums and Cauchy products.

The conversions are effective and one can decide if a S-rational series is S-polyregular.

Proof sketch. Equivalence between Item (1) and Item (3) follows from Lemmas 5.19 and 5.21.
Equivalence between Item (2) and Item (3) follows from [BR11, Exercise 1.2 p 169] in the case of
S = N. For S = Z, this result follows from [BR11, Corollary 2.6 p 159]. However, these results are
not explicitly claimed to be effective. To ensure effectivness, one can start from a S-rational series
f : A∗ → S, enumerate all the S-polyregular functions g : A∗ → S, rewrite them as S-rational
series (using Item (3)⇒ Item (2)) and check whether f = g since this property can be decided for
S-rational series [BR11, Corollary 3.6 p 38]. Finally, given a S-rational series f : A∗ → S, one can
decide if |f(u)| = O(|u|k) for some k ⩾ 0 thanks to [BR11, Corollary 2.4 p 159]. ◀

Asmentioned above, the results of Section4.4 andTheorem5.15 already gave the equivalence between
Item (1) and Item (2) in the case ofN-polyregular functions.

Example 5.23 (Polynomial parity)

The function poly-parity1 : u 7→ (−1)|u||u| belongs to Zpoly1. It can be written 1odd⊗1odd +
1even⊗1even − 1even⊗1odd − 1odd⊗1even − 1odd + 1even and is computed by the Z-automaton:(

A, [1:2],
(
−1 0

)
,

Å
0
1

ã
, µ : u 7→

Å
−1 1
0 −1

ã|u|)
.

We finally transfer the decidability of equivalence from S-rational series to S-polyregular functions.

Corollary 5.24 (Equivalence problem)

Let S := Z orN. One can decide if two S-polyregular functions are equal.

Proof. Equivalence is decidable for Z-rational series by [BR11, Corollary 3.6 p 38]. ◀

5.2.3 Optimization theorem for S-polyregular functions

As observed above, a consequence of Theorem 5.15 and of the results of Section 4.4 is that if f ∈ Npoly
and k ⩾ 0, then f ∈ Npolyk if and only if f(u) = O(|u|k), and that one can optimize N-polyregular
functions. Now our goal is now to show a similar result for Z-polyregular functions.

Jump to contents

132 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

The author is not aware of a direct way to adapt the proof techniques of Section 4.4 toZ-polyregular
functions. Indeed, this previous proof consists in finding patterns in a (N,+,×)-weighted automaton.
Once such a pattern is found, it provides a lower bound on the asymptotic growth of the output. How-
ever, in a (Z,+,×)-weighted automaton, the existence of such a pattern does not provide a global lower
bound for the function, because the output produced along this pattern could be compensated by the out-
put produced along another pattern, due to the presence of both negative and positive outputs. In other
words, understanding the asymptotic growth of Z-polyregular functions requires a global understand-
ing of the output produced, which is not achieved by using patterns in weighted automata. Therefore
we shall instead generalize the notion of production (introduced for 2DT in Definition 2.6) to counting
transducers and mix it with factorization forests as we did in the proofs of Section 2.2 and Chapter 3.

Theorem5.25originates from [CDL23, Theorem III.3]. The proof of this result goes over Sections 5.3
to 5.5, and it also develops several tools that will be re-used in Chapter 6. Equivalence between asymp-
totic growth and minimal number of layers was already known since [Sch62] (see [BR11, Corollary 2.6
p 159] for a modern and more readable presentation). However, this historic proof is largely different
from ours since it relies on the theory of Z-modules. Furthermore, it is not clear7, whether it provides
decidability or effectiveness of the construction, thus to the knowledge of the author this result is new.

Theorem 5.25 (Optimization of pebble transducers with commutative output)

Let S := Z or N. Let f ∈ Spoly and k ⩾ 0, then f ∈ Spolyk if and only if |f(u)| = O(|u|k).
This property is decidable. If it holds, one can build a k-counting transducer which computes f .

Proof sketch. The main idea is to show that for all k ⩾ 1, a function f ∈ Spolyk can be written
as a sum f1 + f2 where f1 ∈ Spolyk−1 and f2 ∈ Spolyk is such that f2 = 0 whenever the addi-
tional condition |f(u)| = O(|u|k−1) holds. Intuitively, f2 contains the “terms of highest degree”
of f . For decidability, we provide a syntactic condition on k-counting transducers called pump-
ability, which is inspired by the similar notion presented in Chapter 3 for optimizing blind pebble
transducers and last pebble transducers. Formally, Theorem 5.25 follows from Theorem 5.54. ◀

As a side result, we shall also show that if f ∈ Spolyk ∖ Spolyk−1 for k ⩾ 1, there exist words
v0, u1, v1, . . . , ukvk such that |f(v0uX1 v1 · · ·uXk vK) = θ(Xk). In other words, we obtain a witness
for its asymptotic growth. In the next Sections 5.3 and 5.5, we present a toolbox which will be used both
for the proof of Theorem 5.25 and for showing the main result of Chapter 6.

5.3 Productions of counting transducers

This section is the counterpart of Section 2.1 when dealing with counting transducers instead of two-
way transducers. It will serve as an advanced toolbox in the proofs of Chapters 5 and 6. We first adapt
the notion of production to counting transducers, following the definitions of [Dou22, Section 5.2]. In-
tuitively, it enables to describe in a fine-grained way which elements of the output where produced from
which positions. Then we provide several analogues of the results of Sections 2.1.2 and 2.2.1.

5.3.1 Productions over multisets of positions

Our first concern is to define the notion of production for counting transducers. Since suchmachines use
several positions of their input at the same time, we shall use multisets (recall that such objects are sets

7A natural idea would be that the asymptotic growth of the output can “easily” be decided by looking at any minimal (see
Section 7.6) (Z,+,×)-weighted automaton which computes the function. We are not aware of such a statement in the literature.

Jump to contents

5.3. PRODUCTIONS OF COUNTING TRANSDUCERS 133

with multiplicities, i.e. where elements can be duplicated) of sets of positions to describe them.
Recall that double braces {{· · · }} denote multisets. We denote by {{s1‡r1, . . . , sn‡rn}} a multiset

containing n distinct elements s1, . . . , sn of respective multiplicities r1, . . . , rn (therefore it contains
r1 + · · ·+ rn elements). Given k ⩾ 1, we let Sk := {(r1, . . . , rn) ∈ Nn | r1 + · · ·+ rn = k}.

Givenu aword, I1, . . . , In disjoint subsets of [1:|u|] and (r1, . . . , rn) ∈ Sk , we define the production
of ak-counting transducer over themultiset{{I1‡r1, . . . , In‡rn}} as the sumof all its outputs taken from
tuples of positions of u which have exactly rj components in Ij for all 1 ⩽ j ⩽ n.

Definition 5.26 (Production of a k-counting transducer)

Let T = (A,S, (δi, Li)1⩽i⩽m) be a k-counting transducer, u ∈ A∗ and I1, . . . , In be disjoint
subsets of [1:|u|] and (r1, . . . , rn) ∈ Sk . We consider the multisetM := {{I1‡r1, . . . , In‡rn}}
and we define the set of tuples which have exactly rj components in Ij :

Tuplesk(M) := {(i1, . . . , ik) | |{1 ⩽ ℓ ⩽ k | iℓ ∈ Ij}| = rj for all 1 ⩽ j ⩽ n}.

We then define the production of T over the multisetM in u as follows:

produT (M) :=

n∑
i=1

δi · |{(i1, . . . , ik) ∈ Tuplesk(M) | u•i1· · ·•ik ∈ Li}|.

Now,we showhowproductions fromDefinition 5.26 can be summedwhen splitting sets of positions
in disjoint subsets. Claim 5.27 can be seen as an analogue of Claim 2.7 for counting transducers.

Claim 5.27 (Productions are additive)

Let T be a k-counting transducer which computes a function f : A∗ → S. Let u ∈ A∗,
I1, . . . , In be disjoint subsets of [1:|u|] and (r1, . . . , rn) ∈ Sk . If I1 = J1 ⊎ · · · ⊎ Jp, then:

produT ({{I1‡r1, . . . , In‡rn}}) =
∑

(j1,...,jp)∈Sr1

produT ({{J1‡j1, . . . , Jp‡jp, I2‡r2, . . . , In‡rn}}).

In particular, if I1, . . . , In is a partition of [1:|u|] we get:

f(u) =
∑

(r1,...,rn)∈Sk

produT ({{I1‡r1, . . . , In‡rn}}).

Proof. LetM := {{I1‡r1, . . . , In‡rn}}. For the first equation, it suffices to observe that:

Tuplesk(M) =
⊎

(j1,...,jp)∈Sr1

Tuplesk({{J1‡j1, . . . , Jp‡jp, I2‡r2, . . . , In‡rn}}).

To show the second equation of Claim 5.27, we first observe that f(u) = produT ({{[1:|u|]‡k}}) and
then we apply the first equation to obtain the desired sum. ◀

5.3.2 Productions over contexts

Now we focus on productions when the sets of positions I1, . . . , In are intervals. For this purpose, we
introduce the notion of µ-k-context as a generalization of µ-contexts from Definition 2.8. Pleasantly
enough, this notion enables to abstract multisets, which are not especially easy to handle.

Jump to contents

134 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Definition 5.28 (Word-k-context, µ-k-context)

Let k ⩾ 0. Given tuples (r1, . . . , rn) ∈ Sk and (v0, u1, v1, . . . , un, vn) ∈ (A∗×A+)n×A∗, we
say that they describe a word-k-context which is denoted v0 ⌊u1⌋r1v1 · · · vn−1 ⌊un⌋rnvn.

Let µ : A∗ → M be a monoid morphism. Given tuples (r1, . . . , rn) ∈ Sk and (m0, u1,m1,
. . . , un,mn) ∈ (M×A+)n×M, we say that they describe a µ-k-context which is denoted by the
sequencem0 ⌊u1⌋r1m1 · · ·mn−1 ⌊un⌋rnmn.

Remark 5.29 (Case r1 = · · · = rn = 1)

In the particular case when r1 = · · · = rn = 1, we simply write v0 ⌊u1⌋v1 · · · vn−1 ⌊un⌋vn or
m0 ⌊u1⌋m1 · · ·mn−1 ⌊un⌋mn. Note that we must have n = k in this case.

Observe that the concatenation of a µ-k-context and µ-k′-context gives a µ-(k+k′)-context. Now
us extend the definition of productions. Consider aword-k-contextv0 ⌊u1⌋r1 · · · ⌊un⌋rnvn, anddefine
u := v0u1 · · ·unvn and Ij for 1 ⩽ j ⩽ n be the interval of positions of uj inside u. Given a k-counting
transducer T , we define prodT (v0 ⌊u1⌋r1 · · · ⌊un⌋rnvn) := produT ({{I1‡r1, . . . , In‡rn}}).

In Proposition-Definition 2.9, we have shown that for two-way transducers, the production over a
word-context v0 ⌊u⌋v1 only depends on theµ-contextµ(v0)⌊u⌋µ(v1)whenµ is the transitionmonoid
of themachine. We provide a similar result for counting transducers in Proposition-Definition 5.31. It is
first necessary to introduce inDefinition 5.30 the notion of transition morphism for counting transducers.
Even if such machines do not perform “transitions”, we chose to keep this terminology. Recall that given
u ∈ A∗, u⋉0 denotes the word (u[1], 0) · · · (u[|u|], 0) ∈ (A× {0, 1})∗.

Definition 5.30 (Transition monoid, transition morphism)

LetT = (A,S, (δi, Li)1⩽i⩽n) be a k-counting transducer. Letφ : (A×{0, 1}k)∗ →M be the
product of the syntactic morphisms8 of the regular languages Li ∈ RegPropk(A) for 1 ⩽ i ⩽ n.

The transition morphism (resp. transition monoid) of T is defined as the morphism µ : A∗ → T
(resp. T ⊆M) which maps u to φ(u⋉0 · · ·⋉0), where T is chosen so that µ is surjective.

Observe that the transition morphism does not take marked letters into account. The main reason
for this feature is that, in a word-k-context v0 ⌊u1⌋r1 · · · ⌊un⌋rnvn, marked letters are meant to be
those of u1, . . . , un. Now we are ready to state the analogue of Proposition-Definition 2.9.

Proposition-Definition 5.31 (Production in a k-context)

Let k ⩾ 0 and T be a k-counting transducer whose transition morphism is µ : A∗ → T. Let
m0 ⌊u1⌋r1 · · · ⌊un⌋rnmn be aµ-k-context, then for all word-k-context v0 ⌊u1⌋r1 · · · ⌊un⌋rnvn
such that µ(vj) = mj for all 1 ⩽ j ⩽ n, the value prodT (v0 ⌊u1⌋r1 · · · ⌊un⌋rnvn) is the same.

We define prodT (m0 ⌊u1⌋r1 · · · ⌊un⌋rnmn) as this value.

Proof. Let v0 ⌊u1⌋r1 · · · ⌊un⌋rnvn and v′0 ⌊u1⌋r1 · · · ⌊un⌋rnv
′
n be word-k-contexts such that

µ(vj) = µ(v′j) for all 1 ⩽ j ⩽ n. Let u := v0u1 · · ·unvn (resp. u′ := v′0u1 · · ·unv′n) and
8Using precisely syntactic morphisms is not useful: we only need to ensure that φ is a surjective monoid morphism which

recognizes the languagesLi for 1 ⩽ i ⩽ n. However, it enables to define “the” transition morphism in a unique fashion.

Jump to contents

5.3. PRODUCTIONS OF COUNTING TRANSDUCERS 135

I1, . . . , In (resp. I ′1, . . . , I ′n) be the positions of u1, . . . , un in u (resp. in u′). Consider the unique
monotone bijection σ :

⊎
1⩽j⩽n Ij →

⊎
1⩽j⩽n I

′
j . Then (i1, . . . , ik) 7→ (σ(i1), . . . , σ(ik))

defines a bijection between Tuplesk({{I1‡r1, . . . , In‡rn}}) and Tuplesk({{I ′1‡r1, . . . , I ′n‡rn}}).
Now let (A,S, (δℓ, Lℓ)1⩽ℓ⩽m) := T . For all (i1, . . . , ik) ∈ Tuplesk({{I1‡r1, . . . , In‡rn}})

and 1 ⩽ ℓ ⩽ m, we have u•i1· · ·•ik• ∈ Lℓ if and only if u′•σ(i1)· · ·•σ(ik)• ∈ Lℓ by definition
of the transition morphism of T . The result follows. ◀

5.3.3 Iterators and pumping lemmas

When studying two-way transducers, we have introduced in Definition 2.10 the notion of µ-K-iterator
as aµ-context whose word could be duplicated without breaking its structure. Suchµ-K-iterators were
then useful to device “pumping lemmas” for two-way transducers and study the asymptotic growth of
their output. The goal of Section 5.3.3 is to generalize these properties to µ-k-contexts.

Definition 5.32 (Iterator)

Let µ : A∗ → M be a monoid morphism and k,K ⩾ 0. Givenm0, . . . ,mk, e1, . . . , ek ∈ M
and u1, . . . , uk ∈ A+, we say that the µ-k-contextm0e1 ⌊u1⌋e1m1 · · ·mk−1ek ⌊uk⌋ekmk is a
µ-(k,K)-iterator if for all 1 ⩽ j ⩽ k, |uj | ⩽ K and ej = µ(uj) is an idempotent.

As a first step towards a pumping lemma, we first describe in Claim 5.33 the shape of the production
when a single word with idempotent image is iterated. Given k ⩾ 0 and (r1, . . . , rn) ∈ Sk we define
its abstract abs(r1, . . . , rn) as the tuple obtained from (r1, . . . , rn) by replacing the maximal blocks
of shape 0, . . . , 0 by a single 0. For instance abs(0, 1, 0, 0, 0, 1, 2) = (0, 1, 0, 1, 2) ∈ S4. We define
Ak := {abs(t) | t ∈ Sk} as the set of abstracts obtained from Sk . Observe that Ak is a finite subset of
Sk . In the following, recall that Z[X] denotes the set of polynomials inX with coefficients in Z.

Claim 5.34 (Iterating one idempotent)

For all r ⩾ 0 and for all (s1, . . . , sn) ∈ Ar , there exists a polynomial P(s1,...,sn)(X) ∈ Z[X]
of degree at most r such that the following holds. Let k ⩾ 0 and T be a k-counting transducer
whose transition morphism is µ : A∗ → T. Given u ∈ A+ such that e := µ(u) is an idempotent
of T and L,R such that L⌊u⌋

r
R is a µ-k-context, we have for allX ⩾ 2r+1:

prodT (L ⌊uX⌋
r
R) =

∑
(s1,...,sn)∈Ar

prodT (L ⌊u⌋
s1
· · · ⌊u⌋

sn
R) · P(s1,...,sn)(X). (5.34)

As a consequence, prodT (L ⌊uX⌋
r
R) is a polynomial inX of degree at most r. Furthermore,

its coefficient inX is 0 if r = 0 and prodT (L e⌊u⌋eR) if r = 1.

Proof. It follows from Claim 5.27 and Proposition-Definition 5.31 that for allX ⩾ 0:

prodT (L ⌊uX⌋
r
R) =

∑
(r1,...,rX)∈Sr

prodT (L ⌊u⌋
r1
· · · ⌊u⌋

rX
R).

Thanks to Claim 5.35, one can recombine various terms of this sum which are equal.

Jump to contents

136 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Claim 5.35 (Abstracts are a sufficient abstraction)

Let (r1, . . . , rX) ∈ Sr and (s1, . . . , sn) := abs(r1, . . . , rX), then:

prodT (L ⌊u⌋
r1
· · · ⌊u⌋

rX
R) = prodT (L ⌊u⌋

s1
· · · ⌊u⌋

sn
R)

Proof idea. Transforming several consecutive ⌊u⌋
0
in a single one corresponds to trans-

forming the concatenation of several idempotents e = µ(u) in a single one. ◀

Therefore Equation (5.34) holds if we define for all (s1, . . . , sn) ∈ Ar :

P(s1,...,sn)(X) := |{(r1, . . . , rX) ∈ Sr | abs(r1, . . . , rX) = (s1, . . . , sn)}| .

Now we justify in Claim 5.36 that P(s1,...,sn)(X) is a polynomial.

Claim 5.36

ForX ⩾ 2r+1, P(s1,...,sn) is a polynomial of Z[X] of degree at most9 r.

Proof. If s := (s1, . . . , sn) ∈ Ar , one has n ⩽ 2r+1 since there are no two consecut-
ive 0. Let 0 ⩽ z ⩽ r+1 be the number of zeros in s, then Ps(X) is the number of tuples
(q1, . . . , qz) ∈ SX−n (it describes how many times we duplicate each 0). We show by induc-
tion on z ⩾ 0 that this value is a polynomial of degree atmost z−1wheneverX−n ⩾ 0. ◀

As a consequence of Equation (5.34) and Claim 5.36, prodT (L ⌊uX⌋
r
R) is a polynomial in

X for X ⩾ 2r+1. For r = 0, this polynomial is constant since the production is obviously
constant. For r = 1, we A1 = {(0, 1), (1, 0), (0, 1, 0)} and P(0,1)(X) = P(1,0)(X) = 1 and
P(0,1,0)(X) = X − 2 for X ⩾ 3. Hence the coefficient in X is prodT (L ⌊u⌋

0
⌊u⌋

1
⌊u⌋

0
R)

which can be rewritten prodT (L e⌊u⌋eR) by Proposition-Definition 5.31. ◀

We are ready to describe what happens when iterating k factors in µ-(k,K)-iterator. Lemma 5.37
gives an analogue of Claim 2.11. A similar result will be given in Claim 6.30. In the following, we denote
by Z[X1, . . . , Xk] the set of multivariate polynomials with coefficients in Z.

Lemma 5.37 (Pumping iterators)

Let k ⩾ 0 and f : A∗ → Z be computed by a k-counting transducerT with transitionmorphism
µ : A∗ → T. Let K ⩾ 0, m0e1 ⌊u1⌋e1m1 · · ·mk−1ek ⌊uk⌋ekmk be a µ-(k,K)-iterator and
v0, . . . , vk ∈ A∗ be such that µ(vj) = mj for all 0 ⩽ j ⩽ k.

Then the functionX1, . . . , Xk 7→ f(v0u
X1
1 v1 · · · vk−1u

Xk

k vk) is a polynomial ofZ[X1, . . . , Xk]
of degree at most k, wheneverX1, . . . , Xk ⩾ 2k+1. Furthermore, the coefficient10 of this poly-
nomial inX1 · · ·Xk is prod(m0e1 ⌊u1⌋e1m1 · · ·mk−1ek ⌊uk⌋ekmk).

Proof. Given 1 ⩽ ℓ ⩽ k, let β(X1, . . . , Xℓ) := v0u
X1
1 · · ·uℓXℓvℓ. We show by induction on ℓ

that if (r, s) ∈ Sk andR is µ-s-context, thenX1, . . . , Xℓ 7→ prodT (⌊β(X1, . . . , Xℓ)⌋r R) is a
polynomial of degree at most r forX1, . . . , Xℓ ⩾ 2k + 1. Furthermore for ℓ > 0, the coefficient
of this polynomial inX1 · · ·Xℓ is 0 if r < ℓ and prodT (m0e1 ⌊u1⌋e1 · · · eℓ ⌊uℓ⌋mℓ R) if r = ℓ.

9P(s1,...,sn) may not have degree r in general. For instance, P(1,1,...,1,1)(X) = 0 forX large enough.
10The functionQ : X 7→ f(v0uX

1 v1 · · · vk−1u
X
k vk) is also a polynomial forX ⩾ 2k+1. However, having several variables

is necessary in our setting, since the coefficient ofQ(X) inXk may not be prod(m0e1 ⌊u1⌋e1m1 · · ·mk−1ek ⌊uk⌋ekmk).
Indeed, iff : anbm 7→ n2 − n×m, then f(aXbX) = 0 for allX ⩾ 0.

Jump to contents

5.4. FACTORIZATION FORESTS FOR COUNTING TRANSDUCERS 137

The result is obvious for ℓ = 0 (with β() = v0) since the production is constant in this case.
Let ℓ ⩾ 1 and assume that the result holds for ℓ−1. We get by Claim 5.27:

prodT (⌊β(X1, . . . , Xℓ)⌋r R) = prodT (⌊β(X1, . . . , Xℓ−1)u
Xℓ

ℓ vℓ⌋r R)

=
∑

(s1,s2,s3)∈Sr

prodT (⌊β(X1, . . . , Xℓ−1)⌋s1 ⌊u
Xℓ

ℓ ⌋s2 ⌊vℓ⌋s3 R).

Now we use Claim 5.33 to split the factor uXℓ

ℓ in several pieces. As a consequence, we get for all
Xℓ ⩾ 2r+1 that the quantity prodT (⌊β(X1, . . . , Xℓ)⌋r R) equals:∑

(r1,r2,r3)∈Sr

s=(s1,...,sn)∈Ar2

Ps(Xℓ)× prodT (⌊β(X1, . . . , Xℓ−1)⌋r1 ⌊uℓ⌋s1 · · · ⌊uℓ⌋sn ⌊αℓ⌋r3 R). (5.38)

By induction hypothesis, each production which occurs in the sum of Equation (5.38) is a poly-
nomial in X1, . . . , Xℓ−1 when X1, . . . , Xℓ−1 ⩾ 2k + 1. Therefore the function X1, . . . , Xℓ

7→ prodT (⌊β(X1, . . . , Xℓ)⌋rR) is a polynomial of degree at most rwhenX1, . . . , Xℓ ⩾ 2k+1.
It remains to study the coefficient inX1 · · ·Xℓ of this polynomial:
▶ if r < ℓ, then by induction hypothesis the only terms in Equation (5.38) whose coefficients

inX1 · · ·Xℓ−1 is possibly non-zero are for r1 = r and r2 = r3 = 0, but then we have no
Xℓ since r2 = 0. Hence the coefficient inX1 · · ·Xℓ is 0;

▶ if r = ℓ, then by induction hypothesis three kinds of terms may have a non-zero coefficient:
▶ r1 = ℓ, r2 = 0, r3 = 0 or r1 = ℓ−1, r2 = 0, r3 = 1, but then we also have noXℓ;
▶ r1 = ℓ−1, r2 = 1 and r3 = 0. Then by using induction hypothesis and thanks to the

last part of Claim 5.33, the coefficient inX1 . . . Xℓ has the desired shape. ◀

5.4 Factorization forests for counting transducers

In Chapter 3, the generic technique for optimizing blind pebble transducers and last pebble transducers
was first to compute a µ-factorization forest of the input (where µ was the transition morphism), and
then to use the structure of the forest in order to recompose the output with one less nested layer. We
want to apply the same strategy for the case of counting transducers. To achieve this goal, Section 5.4
describes how factorization forests can be used to deal with the productions of counting transducers.

In Section 5.4.1 we lift the notion of production from words to µ-forests. Furthermore, we show
how the function computed by a k-counting transducer can be decomposed as the sum of:

▶ a function sum-dep, studied in Section 5.4.2, which is computable by (k−1)-counting transducer;
▶ a function sum-ind, studied in Section 5.4.3. This function is related to the productions performed

from the portions of the input which describe µ-(k,K)-iterators. As such, it can be seen as the
term of “highest degree” of the original function, for which pumping lemmas can be applied.

5.4.1 Productions onmultisets of nodes

Now, let us explain how to lift the notion of productions from multisets of positions to multisets of
iterable nodes in a forest, thanks to the origins (recall Definition 2.28). Recall from Section 2.3 that
Forests(d)µ denotes the set of all µ-factorization forests (of height at most d).

Jump to contents

138 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Definition 5.39 (Production on a multiset of nodes)

Let T be a k-counting transducer and µ : A∗ → M be a monoid morphism. Given u ∈ A+,
F ∈ Forestsµ(u), t1, . . . , tn ∈ ItersF ∪ {F} distinct11 nodes and (r1, . . . , rn) ∈ Sk , we define
the production of T over {{t1‡r1, . . . , tn‡rn}} as follows:

prodFT ({{t1‡r1, . . . , tn‡rn}}) := produT ({{FrF (t1)‡r1, . . . , FrF (tn)‡rn}}).

We observe in Claim 5.40 that the output of T is obtained by ranging over all multisets of nodes.
Recall from Lemma 2.33 that≼ denotes the total ordering of the nodes depending on the first position
of their frontier. Recall that in {{t1, . . . , tk}}, the nodes t1, . . . , tk are not assumed to be distinct.

Claim 5.40 (Decomposition of the output)

Let f : A∗ → S be the function computed by a k-counting transducer T and µ : A∗ → M be a
monoid morphism. For all u ∈ A+ andF ∈ Forestsµ(u), we have:

f(u) =
∑

(t1,...,tk)∈ItersF∪{F}
such that t1≼···≼tk

prodFT ({{t1, . . . , tk}}).

Proof idea. We use Claim 2.31 to get disjoints sets, then we apply Claim 5.27. ◀

Now that we have defined productions over multisets of nodes, the main technique of Chapters 5
and 6 is to use the forest structure for deciding the properties of the function computed byT . In Defin-
ition 2.32, we introduced the notion of dependent nodes, which roughly describes if two iterable nodes
can be duplicated independently while preserving the forest structure. We shift this notion to multisets.

Definition 5.41 (Multiset dependance)

Let F ∈ Forestsµ and t1, . . . , tk ∈ NodesF . We say that the multiset {{t1, . . . , tk}} is independent
if the nodes t1, . . . , tk are pairwise independent, and dependent otherwise.

In particular, if {{t1, . . . , tk}} is independent, we have ti ̸= tj whenever i ̸= j. As a consequence,
any independent multiset {{t1, . . . , tk}} can simply be written as a set {t1, . . . , tk}.

GivenF ∈ Forestsµ , we define the following sets of multisets:

▶ DepkF = {{{t1, . . . , tk}} dependent | t1, . . . , tk ∈ ItersF ∪ {F}};
▶ IndepkF = {{{t1, . . . , tk}} independent | t1, . . . , tk ∈ ItersF ∪ {F}}.

Now if T is a k-counting transducer with output S and transition monoid is µ : A∗ → T, we define
the following functions of type (A ∪ {⟨, ⟩})∗ → S:

sum-depT : F 7→


∑

M∈DepkF

prodFT (M) ifF ∈ Forests3|T|µ ;

0 otherwise.

11Remark that if t1, . . . , tn are distinct nodes from ItersF ∪ {F}, then FrF (t1), . . . , FrF (tn) are disjoint by Claim 2.31.
Therefore Definition 5.39 makes sense with respect to Definition 5.26 which requires disjoint sets of positions.

Jump to contents

5.4. FACTORIZATION FORESTS FOR COUNTING TRANSDUCERS 139

and

sum-indT : F 7→


∑

M∈IndepkF

prodFT (M) ifF ∈ Forests3|T|µ ;

0 otherwise.

which correspond respectively to the productions over dependent and independent multisets.

The bound 3|T|may seem arbitrary, but recall fromTheorem 2.21 that one can build a rational func-
tion forestµ : A+ → Forests3|T|µ which computes a µ-forests of height at most 3|T|. As a consequence,
one can recover the function computed by a counting transducerT thanks to sum-depT and sum-indT ,
as explained in Proposition 5.42. This result is at the heart of the proofs of Chapters 5 and 6.

Proposition 5.42 (Decomposition of the output)

Let f : A∗ → S be the function computed by a k-counting transducer T whose transition
monoid is µ : A∗ →M. Then f = (sum-depT + sum-indT) ◦ forestµ.

Proof idea. We use Claim 5.40 (multisets are either dependent or independent). ◀

We study the functions sum-depT and sum-indT separately in Sections 5.4.2 and 5.4.3. The main
intuition is that if f were a polynomial, then sum-indT would capture its terms of highest degrees.

5.4.2 Productions on dependent multisets

The goal of this section is to show in Lemma 5.43 that the function sum-depT belongs to the class
Spolyk−1. This is the main reason why solving membership problems in the current Chapter 5 and
in Chapter 6 will be done by induction on k ⩾ 1: this way, the difficulties of the induction step will be
condensed in the function sum-indT (whose properties are studied in Section 5.4.3).

Lemma 5.43 (Productions on dependent multisets)

Let S be commutative12 and T be a k-counting transducer with output in S. One can build a
(k−1)-counting transducer with output in S which computes the function sum-depT .

Proof. Themain intuition for showing this result is that if a multiset of k nodes is dependent, then
it has one less degree of freedom and therefore it can be described by using only k−1 nodes.

We assume that T has a single production pair, i.e. that it has shape (A,S, (δ, L)). For all
u ∈ A+ andF ∈ Forests3|T|µ (u), observe that sum-depT (F) = δ · |SF | where:

SF :=
{
(i1, . . . , ik) ∈ [1:|u|]k

∣∣ u•i1•i2 · · · •ik ∈ L
and originF (ij), originF (ij′) are dependent for some j ̸= j′

}
.

Given (i1, . . . , ik) ∈ SF , we let 1 ⩽ j ⩽ k be the smallest index such that originF (ij′) observes
originF (ij) for some j′ ̸= j. We let σF ((i1, . . . , ik)) := (i1, . . . , ij−1, ij+1, . . . , ik) be the tuple
where ij is removed. The function σF has type SF → [1:|u|]k−1.

Since we consider forests of bounded height, we first note in Claim 5.44 that the size of the
pre-image of some tuple under σF has to be bounded. In other words, σF enables to reduce the
dimension of the tuples, up to regrouping them into clusters of bounded size.

12We do not need to assume that S := Z orN in this proof.

Jump to contents

140 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

Claim 5.44 (Bounded pre-images)

There existsN ⩾ 0 such that for allu ∈ A+,F ∈ Forests3|T|µ (u) and1 ⩽ i1, . . . , ik−1 ⩽ |u|,
the size of the set (σF)−1((i1, . . . , ik−1)) ⊆ SF is less thanN .

Proof. If (i′1, . . . , i′k) ∈ (σF)−1((i1, . . . , ik−1)), it means that there exist 1 ⩽ j ⩽ k and
1 ⩽ p ⩽ k−1 such that originF (ip) observes originF (i′j). There is only a bounded number of
such nodes sinceF has bounded height and thanks to Claim 2.31. ◀

We justify in Claim 5.45 that regular languages can detect the size of the pre-images under σF .

Claim 5.45 (Regular pre-images)

For all 0 ⩽ n ⩽ N , one can build Ln ∈ RegPropk−1(A ∪ {⟨, ⟩}) such that the following
holds for all u ∈ A+ andF ∈ Forests3|T|µ (u): we haveF•ℓ1•ℓ2 · · · •ℓk−1 ∈ Ln if and only
if the positions 1 ⩽ ℓ1, . . . , ℓk−1 ⩽ |F| correspond to leaves of F which encode positions
1 ⩽ i1, . . . , ik−1 ⩽ |u| of the word u such that |(σF)−1((i1, . . . , ik−1))| = n.

Proof idea. As shown in Claim 3.22, one can first build a regular language which detects
whether the marked positions 1 ⩽ ℓ1, . . . , ℓk−1 ⩽ |F| are leaves of F . Assume that they
account for positions 1 ⩽ i1, . . . , ik−1 ⩽ |u|, the additional idea is to count the number
of positions 1 ⩽ i ⩽ |u| and 1 ⩽ p ⩽ k−1 such that σF (i1, . . . , ip, i, ip . . . , ik−1) =
(i1, . . . , ik−1). Since there is only a bounded number of such candidate positions to check
(recall the proof of Claim 5.44 and Claim 2.31), one can build a regular language which counts
them and determines whether |(σF)−1((i1, . . . , ik−1))| = n holds. ◀

We conclude by observing that |SF | =
∑N

n=0 n×#Ln(F) for allF ∈ Forests3|T|µ . ◀

5.4.3 Productions on independent multisets

Recall from Proposition 5.42 that the study of the function computed by a k-counting transducer T
resumes to the study of the functions sum-depT and sum-indT . We have shown in Section 5.4.3 that
sum-depT belongs to Spolyk−1. Nowwe focus on sum-indT , i.e. the productions on independent sets13.

We first describe the concept of linearization of a (multi)set from IndepkF . It aims at abstracting the
frontiers of its nodes as a µ-k-context. Roughly, it consists in replacing all letters which are not in some
frontier by their image under the monoid morphism. This notion originates from [Dou22, Section E].

Definition 5.46 (Linearization)

Let µ : A∗ →M be a morphism into a finite monoid, u ∈ A+ andF ∈ Forestsµ(u). Given a set
M ∈ IndepkF , we define its linearization by induction on the forest structure:

▶ if |M | = 0, then linF (M) := µ(u);
▶ ifM = {F} then linF (M) := ⌊u[FrF (F)]⌋ ;
▶ otherwiseF = ⟨F1⟩ · · · ⟨Fn⟩ andF ̸∈M . For 1 ⩽ j ⩽ n we let14 Mj :=M ∩ NodesFj

and we define the concatenation linF (M) := linF1
(M1) · · · linFn

(Mn).

13Recall that independent multisets are sets since all their elements are disjoint.
14Observe thatMj ∈ Indep|Mk|

Fj
for all 1 ⩽ j ⩽ n.

Jump to contents

5.4. FACTORIZATION FORESTS FOR COUNTING TRANSDUCERS 141

Example 5.47 (Linearization)

The linearization of the singleton set containing the topmost blue node in Figure 2.26 (recall that
hereM = ({−1, 1, 0},×)) is (−1)×(−1)×0⌊(−1)00⌋0 = 0⌊(−1)00⌋0.

Now we show in Lemma 5.48 that the linearization of an independent set is a µ-(k,K)-iterator
whose production is the same as the production on the original set of nodes. The intuition is that since
we remove letters which are “in the middle of idempotents”, the behavior of T will not be modified.

Lemma 5.48 (Productions only depend on linearizations)

Let T be a k-counting transducer with transition morphism µ : A∗ → T. LetK ⩾ 0, u ∈ A+,
F ∈ ForestsKµ (u) andM ∈ IndepkF . Then prodFT (M) = prodT (linF (M)).

Furthermore, if M = {t1, . . . , tk} with t1≼ · · ·≼tk , then linF (M) is a µ-(k, 2K)-iterator of
shapem0e1 ⌊u1⌋e1m1 · · ·mk−1ek ⌊uk⌋ekmk such that µ(u) = m0e1m1 · · ·mk−1ekmk and
for all 1 ⩽ j ⩽ k, µ(uj) = ej and linF ({tj}) = m0e1m1 · · ·mjej ⌊uj⌋ejmj+1 · · · ekmk .

Proof sketch. Let us first focus on the caseM = F . We have linF (M) = ⌊u[FrF (F)]⌋ and
one has to justify that removing the letters which are not in FrF (F) will not affect the production
performed by a counting transducer. For this, we show in Claim 5.49 that the letters of FrF (F)
have the same environment in u and in u[FrF (F)], which is formalized using µ-1-contexts.

Claim 5.49 (Context along a frontier)

Let u ∈ A+, F ∈ Forestsµ(u), t ∈ NodesF , I := FrF (F), u′ := u[I], and σ : I → [1:|u′|]
be the unique monotone bijection. Then for all i ∈ I the following µ-1-contexts are equal:

µ(u[1:i−1])⌊u[i]⌋µ(u[i+1:|u|]) = µ(u′[1:σ(i)−1])⌊u′[σ(i)]⌋µ(u′[σ(i)+1:|u′|]).

As an immediate consequence of this statement, we have µ(u) = µ(u′).

Proof of Claim 5.49. We show the result by induction on F . It is obvious if F = a ∈ A.
Now, assume that F = ⟨F1⟩ · · · ⟨Fn⟩ where u = u1 · · ·un is the according factorization.
Then u′ = u′1u

′
n where u′j := uj [FrFj

(Fj)] for j ∈ {1, n}. We only treat the case n ⩾ 3,
i.e. when µ(u1) = · · · = µ(un) is an idempotent. For i ∈ I1 := FrF (F1) = I ∩ [1:|u1|], we
have 1 ⩽ σ(i) ⩽ |u′1| and σ|I1 : I1 → [1, |u′1|] is the monotone bijection. Then:

µ(u[1:i−1])⌊u[i]⌋µ(u[i+1:|w|])
= µ(u[1:i−1])⌊u1[i]⌋µ(u1[i+1:|u1|])µ(u2) · · ·µ(un)
= µ(u1[1:i−1])⌊u1[i]⌋µ(u1[i+1:|u1|])µ(un) since µ(un) is idempotent;

= µ(u′1[1:σ(i)−1])⌊u′1[σ(i)]⌋µ(u′1[σ(i)+1:|u′1|])µ(u′n) by induction hypothesis;

= µ(u′[1:σ(i)−1])⌊u′[σ(i)]⌋µ(u′[σ(i)+1:|u′|]).

The case of i ∈ FrF (Fn) is symmetrical. The case n ⩽ 2 is similar and easier. ◀

It is easy to deduce from Claim 5.49 that the result holds for k = 1 whenM = {F}. The
bound 2K follows from the fact that skeletons are binary trees of height at most K . The gener-
alization of the result to arbitrary k ⩾ 1 andM ∈ IndepkF follows from the same arguments as

Jump to contents

142 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

those of Lemma 2.33. The reader is invited to look back at Figure 2.34 which provides the desired
µ-(k, 2K)-iterator structure and justifies that Claim 5.49 can be applied15 to each node. ◀

As a consequence of Lemma 5.48, the function sum-indT deals with sets of positions which describe
µ-(k, 23|T|)-iterators. Therefore, we shall be able to apply “pumping” technologies (e.g. Lemma 5.37) in
order to show that this function enjoys good properties when solving a membership problem.

5.5 Solving the optimization problem for counting transducers

This section is devoted to showing Theorem 5.25 (it will follow from Theorem 5.54). The main idea is
to follow a proof strategy which is similar to that of Sections 3.2 and 3.3.

We first give a necessary condition, named pumpability, for a k-counting transducer to compute a
function f such that |f(u)| = O(|u|k−1). If it does not hold, the function cannot be computed by a
(k−1)-counting transducer. Definition 5.50 can be seen as an analogue of Definitions 3.17 and 3.25.

Definition 5.50 (Pumpable counting transducer)

Let k ⩾ 1 and T be a k-counting transducer with transition morphism µ : A∗ → T. We say
thatL is pumpable if there exists a µ-(k, 23|T|)-iteratorm0e1 ⌊u1⌋e1 · · · ek ⌊uk⌋ekmk such that
prodT (m0e1 ⌊u1⌋e1 · · · ek ⌊uk⌋ekmk) ̸= 0.

Observe that pumpability is decidable, since it merely consists in checking that the production ofT
is nul on a finite number of µ-k-contexts. Recall that the analogue pumpability notions of Sections 3.2
and 3.3 were decidable as well, for the same reasons.

Nowwe show inLemma5.51 that pumpability is a sufficient condition for having asymptotic growth
in θ(|u|k). This result crucially relies on Lemma 5.37 and is an analogue of Claims 3.19 and 3.27. How-
ever, its proof is slightly more subtle since one needs to ensure that no compensations can occur in Z.

Lemma 5.51 (Pumpability⇒Growth)

Let k ⩾ 1 and f : A∗ → Z be computed by a k-counting transducer which is pumpable. There
exists v0, . . . , vk ∈ A∗, u1, . . . , uk ∈ A+, such that |f(v0uX1 · · ·uXk vk)| = θ(Xk).

Proof. Let T be a k-counting transducer which is pumpable. There exists a µ-(k,K)-iterator
m0e1 ⌊w1⌋e1 · · · ek ⌊wk⌋ekmk such that prodT (m0e1 ⌊w1⌋e1 · · · ek ⌊wk⌋ekmk) ̸= 0. Since µ
is surjective, one can find v0, . . . , vk ∈ A∗ such that such that µ(vj) = mj for all 0 ⩽ j ⩽ k.
It follows from Lemma 5.37 thatX1, . . . , Xk 7→ f(v0w

X1
1 v1 · · · vk−1w

Xk

k vk) is a polynomial of
Z[X1, . . . , Xk] of degree at most k forX1, . . . , Xk large enough. Furthermore, the coefficient of
this polynomial inX1 · · ·Xk is α := prod(m0e1 ⌊w1⌋e1m1 · · ·mk−1ek ⌊wk⌋ekmk) ̸= 0.

We then rely on the following classical result for multivariate polynomials.

Claim 5.52 (Multivariate polynomials)

Let P ∈ Q[X1, . . . , Xk] be a polynomial of degree exactly ℓ. There existsN1, . . . , Nk ⩾ 1
such that |P (N1X, . . . , NkX)| = θ(Xℓ) whenX → +∞.

15Having an independent multiset is crucial here. For instance, in the extreme opposite case where some nodes ofM would be
the same, then Claim 5.49 could not be applied to show that the production is preserved.

Jump to contents

5.5. SOLVING THE OPTIMIZATION PROBLEM FOR COUNTING TRANSDUCERS 143

Proof. For allN1, . . . , Nk ⩾ 0,PN1,...,Nk
: X 7→ P (N1X, . . . , NkX) is a polynomial inX

of degree atmost ℓ. LetC(N1, . . . , Nk) be the coefficient inXℓ ofPN1,...,Nk
, thenC is a non-

null multivariate polynomial (sinceP has a term of degree ℓwhich is not null). Therefore (this
is a classical algebraic argument) there existN1, . . . , Nk ⩾ 1 such thatC(N1, . . . , Nk) ̸= 0.
For this tuple, PN1,...,Nk

has degree exactly ℓ. Thus |PN1,...,Nk
(X)| = θ(Xℓ). ◀

LetN1, . . . , Nk be given by Claim 5.52 for the polynomial P which has degree k. This result
gives |f(v0wN1X

1 v1 · · · vk−1w
NkX
k vk)| = θ(Xk). Thus we let uj := w

Nj

j for all 1 ⩽ j ⩽ k. ◀

We also give an analogue of Lemmas 3.23 and 3.34. Lemma 5.53 shows that if T is not pumpable,
then all the terms which define the function sum-indT have to be null.

Lemma 5.53 (Key lemma for removing one layer)

Let S := Z orN and k ⩾ 1. Given a function f : A∗ → S computed by a k-counting transducer
T which is not pumpable andwhose transitionmorphism isµ : A∗ → T, we have sum-indT = 0
and therefore f = sum-depT ◦ forestµ where sum-depT ∈ Spolyk−1.

Proof. Thanks to Lemma 5.43 and Proposition 5.42, we only need to show that sum-indT = 0. We
show a stronger result: all the terms which define this function are null when T is not pumpable.
Indeed, assume by contradiction that prodFT (M) ̸= 0 for some F ∈ Forests3|T|µ and (multi)set of
nodesM ∈ IndepkF . It follows from Lemma 5.48 that prodFT (M) = prodFT (linF (M)) and that
linF (M) is a µ-(k, 23|T|)-iterator. Therefore T should be pumpable. ◀

Now we are ready for the proof of Theorem 5.54, which is a refinement of Theorem 5.25. As men-
tioned above, the proof strategy is similar to that of Sections 3.2.2 and 3.3.2: we use the precomputation
of a factorization forest in order to produce the same output while using one less layer.

Theorem 5.54 (Removing one counting layer)

Let S := Z orN. Let k ⩾ 1 and f : A∗ → S be a function computed by a k-counting transducer
T whose transition morphism is µ : A∗ → T. The following conditions are equivalent:

(1) |f(u)| = O(|u|k−1);
(2) for all v0, . . . , vk ∈ A∗, u1, . . . , uk ∈ A∗, |f(v0uX1 v1 · · · vk−1uk

Xvk)| = O(Xk−1);
(3) for all v0, . . . , vk ∈ A∗, u1, . . . , uk ∈ A∗, |f(v0uX1 v1 · · · vk−1uk

Xvk)| ≠ θ(Xk);
(4) T is not pumpable;
(5) f ∈ Spolyk−1 (it can be computed by a (k−1)-counting transducer).

Furthermore, this property is decidable and the construction is effective.

Proof. Item (5)⇒ Item (1)⇒ Item (2)⇒ Item (3) are obvious and Item (3)⇒ Item (4) is Lemma5.51.
Let us show Item (4)⇒ Item (5). It follows from Proposition 5.42 that f = sum-depT ◦ forestµ
where sum-depT ∈ Spolyk−1. Therefore, f ∈ Spolyk−1 thanks to Proposition 5.7 which enables
to pre-compose by the regular function forestµ from Theorem 2.21. Decidability follows from the
fact that pumpability is decidable, as observed right after Definition 5.50. ◀

As a consequence of Item (3) inTheorem5.54, iff ∈ Spolyk∖Spolyk−1, there existv0, . . . , vk ∈ A∗,
u1, . . . , uk ∈ A+ such that |f(v0uX1 v1 · · · vk−1uk

Xvk)| = θ(Xk). In other words, one can find some
patterns which witness the asymptotic growth of the function when iterated.

Jump to contents

144 CHAPTER 5. POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUTS

5.6 Discussion: from Z-polyregular toN-polyregular

Wehave shown that the class membership problems about S-rational series and S-polyregular functions
for S = Z orN could be solved. In this section, we briefly discuss Open question 5.55.

Open question 5.55 (From Z-polyregular toN-polyregular)

Given a Z-polyregular function, can we decide if it isN-polyregular?

The author is not aware of an answer to this question in the literature, even when considering ra-
tional series instead of polyregular functions. However, it is well-known that non-negativity does not
characterize16 N-polyregular functions within the Z-polyregular ones, as recalled in Example 5.56.

Example 5.56 (Non-negativity does not characterizeN-polyregular)

If f : A∗ → N is N-polyregular, then f−1({δ}) is a regular language for all δ ∈ N (this result
follows fromProposition 1.41). TheZ-polyregular function g : u 7→ (|u|a−|u|b)2 for a ̸= b ∈ A
is notN-polyregular since g−1({0}) = {u ∈ A∗ | |u|a = |u|b}. However g(A∗) ⊆ N.

Now we discuss the particular case of unary inputs. In this setting,N-polyregularity coincides with
non-negativity. Theorem 5.57 can be found e.g. in [BR11, Proposition 2.1 p 137].

Theorem 5.57 (Non-negativity =N-polyregularity)

LetA = {a} be an alphabet which contains a single letter. AZ-polyregular function f : A∗ → N
isN-polyregular if and only if f(A∗) ⊆ N.

However, Theorem 5.57 cannot be extended toN-rational series with unary input alphabet. Indeed,
the function an 7→ 3n + (−2)n is Z-rational and nonnegative but notN-rational. This argument hints
that solving Open question 5.55 is probably simpler than obtaining a result for rational series.

16This result implies that Z is not a Fatou extension ofN, see e.g. [BR11, Chapter 7].

Jump to contents

Chapter 6

Polyblind functions with
commutative output

LE SOUCI
Aveugle, l’homme l’est tout au long de sa vie.

Toi, deviens-le, Faust, à la fin.

FAUST, aveugle
La nuit semble s’accroître et se fait plus profonde ;
Mais au dedans, mon cœur rayonne de clarté
Et ce que j’ai conçu doit être exécuté.

Johann Wolfgang von Goethe, Faust II (Hélène)
(trad. J. Malaplate)

Wehave shown inChapter 5 that the classes of functions computed by pebble transducers andmarble
transducers (and thus by last pebble transducers) with output in a commutative monoid S are the same.
Such functions were said to be S-polyregular. Furthermore, for S := Z or N, we have shown that the
number of layers required to compute a function can be optimized. The goal of Chapter 6 is to study the
class of functions computed by blind pebble transducers with output in S, named S-polyblind functions.
In particular, we show that one can decide if an S-polyregular function is S-polyblind for S := Z orN.

N-RATIONAL SERIES
Closure ofN-regular
under+,⊗, ∗(,×)

N-REGULAR
Npoly1=Nblind1

N-POLYBLIND
Closure ofN-regular

under+,×

N-POLYREGULAR
Closure ofN-regular
under+,⊗(,×)

nba : u 7→ |u|a

nba,b : u 7→ |u|a × |u|b

map-power2 : 0
n1# · · ·#0nm 7→

∑m
i=1 n

2
i

u 7→ 2|u|

Figure 6.1: Classes of functions studied in Chapter 6 for S = N.

146 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

In Section 6.1 we introduce the class of S-polyblind functions and claim that it is captured by blind
counting transducers, which are a simple variant of the counting transducers from Chapter 5. The main
difference is that counting transducers can check regular properties of tuples of positions, while blind
counting transducers can only check properties of positions. Furthermore, we explain for S := Z or
N how S-polyblind functions can be described as a subclass of S-rational series, in a similar fashion to
S-polyregular functions. This characterization is presented in Figure 6.1 for S := N.

The goal of Section 6.2 is to state the main result of Chapter 6, that is the decidability of the class
membership problem from S-polyregular to S-polyblind for S := Z orN. Intuitively, it provides a way
to simplify a program with “for” loops by making its nested loop indices independent. For the first time
in this manuscript (and contrary to the proofs of Chapters 3 to 5), it is no longer possible to use the
asymptotic growth of the functions to discriminate between the classes. Indeed, both S-polyregular to
S-polyblind may have polynomial growth. Therefore, we introduce a new semantic condition named
repetitiveness and show that it characterizes S-polyblind functions among the S-polyregular ones. This
result has several low hanging consequences. In particular, it enables to easily build separating examples
between the two classes (see Figure 6.1). Furthermore, it yields an optimization result for S-polyblind
functions, which is similar to the result of Chapter 5 for S-polyregular functions.

The proof of the membership result from S-polyregular to S-polyblind is rather involved and goes
over Sections 6.3 to 6.5. It is built upon the tools introduced in Chapters 2 and 5 and crucially relies on
the use of factorization forests to decompose the output of counting transducers. The main idea is to
perform an induction, while insulating during the induction steps the terms of “highest degree” of the
function. Interestingly, the semantic characterization of S-polyblind functions thanks to repetitiveness
is not only a consequence of this proof, but also a key technical tool for the induction step.

The contributions presented in this chapter are based on the results of [Dou21, Dou22], which focus
onN-polyregular functions. We observe that the proof also works for Z-polyregular functions.

6.1 Polyblind functions with commutative output

We first introduce the class of polyblind functions which have output in a commutative monoid S. Sec-
tions 6.1.1 and 6.1.2 can be seen as analogues of Section 5.1 for commutative outputs. In Section 6.1.3,
we then connect this class of functions to S-rational series for S := Z orN.

6.1.1 Blind pebble transducers with commutative output

Let (S,+) be a (possibly infinite) commutative monoid. We define the class of S-polyblind functions as
functions of typeA∗ → S whereA is a finite alphabet. Definition 6.2 is the analogue of Definition 5.2.

Definition 6.2 (S-polyblind functions)

The class of S-polyblind functions is the class of functions of shape sum ◦ g : A∗ → S where
g : A∗ → S∗ is polyblind1 (recall that sum : S∗ → S is the sum operation in S).

Observe thatN-polyblind functions exactly capture the functions f : A∗ → N such that the function
g : A∗ → {1}∗, u 7→ 1f(u) is polyblind. We denote by Sblind the class of S-polyblind functions. More
precisely, for all k ⩾ 1, we denote by Sblindk the class of functions of shape sum ◦ g : A∗ → S where
the function g : A∗ → S∗ is computed by a blind k-pebble transducer. We let Sblind0 := Spoly0. Note

1As for Definition 5.2, we consider in fact polyblind functions of typeA∗ → F ∗ for F a finite subset of S.

Jump to contents

6.1. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT 147

that Sblind1 = Spoly1 and that Sblindk ⊆ Sblindk+1 and Sblindk ⊆ Spolyk for all k ⩾ 0. We shall see
in Section 6.2 that all these inclusions are strict for S := Z orN.

Example 6.3 (Counting letters)

The function nba1,...,ak
: u 7→ |u|a1 × · · · × |u|ak

belongs toNblindk .

Example 6.4 (Polynomial parity)

The function poly-parityk : u 7→ (−1)|u|×|u|k belongs toZblindk thanks to ak-pebble transducer
which produces an output either in {+1}∗ or {−1}∗.

One can shift closure properties from polyblind to S-polyblind functions, as we did in Proposi-
tion 5.7 when showing closure properties of S-polyregular functions.

Proposition 6.5 (Pre-composition by regular functions)

For all k ⩾ 0, the class Sblindk is (effectively) closed under pre-composition by regular functions.

Proof. For k ⩾ 1, we rely on Theorem 3.6 which implies that the class of functions computed by
blind k-pebble transducers is closed under pre-composition by regular functions. ◀

6.1.2 Blind counting transducers

Now we describe a simple variant of counting transducers which captures S-polyblind functions. The
main idea is that a blind k-counting transducer is a k-counting transducer which can only check regular
properties of each position in a k tuple of positions, but not on the tuple itself2. In other words, it checks
k-tuples of properties of RegProp1 instead of properties of RegPropk .

Definition 6.6 (Counting transducer)

Let k ⩾ 0. A blind k-counting transducer T = (A,S, (δi, (Li,j)1⩽j⩽k)1⩽i⩽n) consists of:

▶ an input alphabetA and an output commutative monoid S;
▶ a sequence (δi, (Li,j)1⩽j⩽k)1⩽i⩽n of pairs with δi ∈ S and Li,j ∈ RegProp1(A).

The blind k-counting transducerT computes the function
∑n

i=1 δi · (#Li,1 × · · · ×#Li,k). For
all 1 ⩽ i ⩽ n, one can buildRi ∈ RegPropk(A) such that#Ri = #Li,1 × · · · ×#Li,k . Therefore a
blind k-counting transducer can be seen as a particular case of k-counting transducer.

Example 6.7 (Polynomial parity)

The function poly-parityk : u 7→ 1even(u) × |u|k − 1odd(u) × |u|k can be computed by a blind
k-counting transducer with two pairs.

A blind k-counting transducer can be seen as an algorithm with k nested (one-way) for loops, as
described inAlgorithm6.8 fork = 3. The reader is invited to compare carefully Algorithms 5.13 and 6.8.
As mentioned above, the key difference between them is the following: Algorithm 5.13 checks a regular
property of the tuple of positions (i1, i2, i3), while Algorithm 6.8 checks properties of i1, i2 and i3
separately, and then recombines this information to select its output.

2One could imagine intermediate versions of this model, e.g. by allowing to check properties on pairs of positions but not on
triples, etc. This gradation is somehow similar to the notion of variable independence in database theory, see e.g. [FT08].

Jump to contents

148 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

Algorithm 6.8: Implementation of a blind 3-counting transducer with nested loops.
1 for i1 in [1:|u|] do
2 for i2 in [1:|u|] do
3 for i3 in [1:|u|] do
4 if u•i1 ∈ L1 and u•i2 ∈ L2 and u•i3 ∈ L3 then
5 Output δ
6 end
7 if u•i1 ∈ L′

1 and u•i2 ∈ L′
2 and u•i3 ∈ L′

3 then
8 Output δ′
9 end

10 end
11 end
12 end

We claim in Theorem 6.9 that blind counting transducers (unsurprisingly) compute the class of
S-polyblind functions. This easy result originates from [Dou21, Proposition 3.4] for S = N (it is also a
consequence of [NNP21, Corollary 5.7]). It is an analogue of Theorem 5.15 in our setting.

Theorem 6.9 (Blind pebble = Blind counting)

Let S be a commutative monoid and k ⩾ 0. A function f : A∗ → S belongs to Sblindk if and only
if it can be computed by a blind k-counting transducer. The conversions are effective.

Proof idea. The transformation from a blind k-counting transducer to Sblindk is trivial, we focus
on the converse one. We show it by induction for k ⩾ 1. The base case being trivial, let us con-
sider a blind (k+1)-pebble transducer T ⟨B1⟩ · · · ⟨Bp⟩ whose subtrees B1, . . . ,Bp have heads
T1, . . . ,Tp. Let T := {T1, . . . ,Tp} and g : A∗ → T ∗ be the function computed by T . For all
1 ⩽ i ⩽ n, the function u 7→ |g(u)|Ti belongs to Sblind1 = Spoly1 thanks to Theorem 5.15. We
conclude by induction since JJT KK(u) =

∑n
i=1 |g(u)|Ti × JJTiKK(u) for all u ∈ A∗. ◀

6.1.3 S-polyblind functions as S-rational series

Nowwe characterize the class of S-polyblind functions as a natural subclass of (S,+,×)-rational series
for S := Z orN. The results of this section are merely reformulations of Theorem 6.9.

We first give an analogue of Lemmas 5.19 and 5.21 when dealing with Hadamard product.

Lemma 6.10 (Closure properties of S-polyblind functions)

Let S := Z or N. The class of S-polyblind functions is closed under Hadamard products. More
precisely, if f ∈ Sblindk and g ∈ Sblindℓ, then f × g ∈ Sblindk+ℓ. The construction is effective.

Furthermore, for all k ⩾ 0, the following equality holds and the conversions are effective:

Sblindk+1 = SpanS({f × g | f ∈ Sblind1, g ∈ Sblindk}).

Proof. Use Theorem 6.9 and the definition of blind counting transducers. ◀

Jump to contents

6.2. MEMBERSHIP PROBLEM FOR S-POLYBLIND FUNCTIONS 149

Example 6.11 (Counting letters)

For all a1, . . . , ak ∈ A, the function nba1,...,ak
equals nba1

× · · · × nbak
.

We refer to Spoly1 = Sblind1 as the class of S-regular functions since it describes the function sum◦f
where f is regular3. It follows fromTheorem 5.22 that S-polyregular functions is the smallest class con-
taining the S-regular functions and closed under external products, sums and Cauchy products. The-
orem 6.12 provides an analogue of this statement, it originates from [Dou22, Theorem 3.4].

Theorem 6.12 (S-polyblind functions as S-rational series)

Let S := Z or N. A function f : A∗ → S is S-polyblind if and only if it belongs to smallest
class of functions of typeA∗ → S containing the S-regular functions4 and closed under external
products5, sums and Hadamard products. The conversions are effective.

Proof. Apply Theorem 6.9 and Lemma 6.10. ◀

Onemay ask whether the notion of S-polyblind functions can be generalized to define a larger class
of blind S-rational series, for instance by means of an equivalent of Kleene star using Hadamard product
instead of the Cauchy one. We believe that such an extension is related to the extension of blind pebble
transducers to recursive blind pebble transducers (which was discussed in Section 4.5) and therefore
seems to be irrelevant for S := Z or N. We note that [Cho17, Section 2.1] introduces a notion called
Hadamard star on rational series, but it has no interest6 for (Z,+,×)-rational series

6.2 Membership problem for S-polyblind functions

The goal of this section is to state the main result of Chapter 6, which claims that for S := Z or N,
one can decide if a S-polyregular function is S-polyblind. We also provide a semantic condition called
repetitiveness which characterizes these S-polyblind functions. In addition to its own interest, this char-
acterization will be used as a key ingredient within the proof of the decidability result.

6.2.1 Repetitive functions

We first introduce the notion of repetitive function, which originates from [Dou22, Definition 4.1]. In-
tuitively, if a function is repetitive and the same factor is repeated in two blocks of its input, then the
value of its output will depend of the total number of iterations, but not on the size of the blocks. This
means that the function cannot distinguish between two repetitions of the same factor. Formally, the
notion of repetitiveness is presented in Definition 6.13. Since we shall intend to use pumping arguments,
we provide a statement which deals with “long enough” repetitions of words.

3Due to commutativity, one can replace regular by rational in this statement. Hence this class could also be called S-rational
functions, but we avoid this terminology since it can create confusion with the (distinct) class of S-rational series

4Contrary to what happens in Item (3) of Theorem 5.22, here one cannot replace S-regular functions by indicator functions of
regular languages. Indeed, otherwise the closure would describe no more than Spoly0 = Sblind0 because of Lemma 6.10.

5Since we start from S-regular functions, this operation is in fact not needed.
6It is only defined for (Q,+,×)-rational series f : A∗ → S such that

∑
n⩾0 f(u)

n converges for all u ∈ A∗ .

Jump to contents

150 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

Definition 6.13 (Repetitive function)

Let k ⩾ 1. We say that a function f : A∗ → S is k-repetitive if there exists Ω ⩾ 1, such that the
following holds. For all s, v0, u1, v1, . . . , uk, vk, t ∈ A∗ andN ⩾ 1multiple of Ω, define:

W : Nk → A∗, X1, . . . , Xk 7→ v0u
NX1
1 v1 · · · vk−1u

NXk

k vk

and let w := W (1, . . . , 1). Then there exists a function F : Nk → S such that for all tuple
X := X1, . . . , Xk ⩾ 3 and Y := Y1, . . . , Yk ⩾ 3, we have:

f(sw2N−1W (X)wN−1W (Y)wN t) = F (X1 + Y1, . . . , Xk + Yk).

Observe that if f is k-repetitive, then f is also ℓ-repetitive for all 1 ⩽ ℓ ⩽ k. Now let us give a few
examples in order so see when this criterion holds, or not.

Example 6.14 (Counting letters)

The function nba : u 7→ |u|a is k-repetitive for all k ⩾ 1. Indeed, with the notations of Defini-
tion 6.13 it is easy to show that ifC := |sw2N−1wN−1wN t|a then:

nba(sw
2N−1W (X)wN−1W (Y)wN t) = (X1 + Y1)N |u1|a + · · ·+ (Xk + Yk)N |uk|a + C.

More generally, the function nba1,...,aℓ
: u 7→ |u|a1

× · · · × |u|aℓ
is k-repetitive for all k ⩾ 1.

Example 6.15 (Unary input alphabet)

A function f : {1}∗ → S (with unary input alphabet) is k-repetitive for all k ⩾ 1. Indeed, with
the notations of Definition 6.13,X,Y 7→ sw2N−1W (X)wN−1W (Y)wN t ∈ {1}∗ is a function
ofX1 + Y1, . . . , Xk + Yk , hence so is its image f(sw2N−1W (X)wN−1W (Y)wN t).

Example 6.16 (Map power)

For all k ⩾ 2, the function map-powerk : 0n11 · · · 10nm 7→
∑m

i=1 n
k
i is not 1-repetitive. Let us

choose any Ω ⩾ 1 and fix s = t := ε, u1 := 0 and v0 = v1 := 1, then:

map-powerk(W (X1, Y1)) = map-powerk((10
Ω1)2Ω−110ΩX11(10Ω1)Ω−110ΩY11(10Ω1)Ω)

= Ωk(4Ω− 2) + ΩkXk
1 + ΩkY k

1

which is not a function ofX1 + Y1 for k ⩾ 2.

6.2.2 Decidability result of S-polyblind inside S-polyregular

Nowwe are ready to decide and characterizeS-polyblind functions among theS-polyregular ones. The-
orem 6.17 originates from [Dou22, Theorem 4.6] in the case S := N. The proof of this result goes over
Sections 6.3 to 6.5 and it relies oncemore on the factorization forests techniques which were introduced
in Chapter 5, while being more involved than the previous proof.

Jump to contents

6.2. MEMBERSHIP PROBLEM FOR S-POLYBLIND FUNCTIONS 151

Theorem 6.17 (S-polyregular→ S-polyblind)

Let S := Z or N. A function f ∈ Spolyk is S-polyblind if and only if it is k-repetitive. This
property is decidable. If it holds, one can build a blind k-counting transducer which computes f .

Proof sketch. Themain idea is to show by induction on k ⩾ 1 that if f ∈ Spolyk is a k-repetitive
function, then f can be written as a sum f1 + f2 where f1 ∈ Spolyk−1 is (k−1)-repetitive (there-
fore f1 ∈ Sblindk−1 by induction hypothesis) and f2 ∈ Sblindk . Beware that f1 and f2 will not
exactly be the same functions as those of the proof sketch of Theorem 5.25 in Chapter 5. For de-
cidability, we provide a syntactic condition on k-counting transducers called permutability, which
is inspired by pumpability. Formally, Theorem 6.17 follows from Theorem 6.51. ◀

Let us discuss low hanging consequences of Theorem 6.17. By leveraging Example 6.16, we first
provide in Example 6.18 separating examples between S-polyregular and S-polyblind functions.

Example 6.18 (Strict hierarchies)

Let k ⩾ 2. The function map-powerk : 0n11 · · · 10nm 7→
∑m

i=1 n
k
i is N-polyregular but neither

N-polyblind nor Z-polyblind, since it is not 1-repetitive. In a similar fashion, the modified func-
tion 0n11 · · · 10nm 7→

∑m
i=1(−1)ninki is Z-polyregular but not Z-polyblind.

Nowwe show in Corollary 6.19 that the classes of S-polyregular and S-polyblind functions coincide
when the inputs are unary. This result originates from [Dou22, Corollary 4.9]7.

Corollary 6.19 (Unary input alphabet)

If the input alphabet is unary, the classes ofN-polyregular (resp. Z-polyregular) andN-polyblind
(resp. Z-polyblind) functions coincide. The transformations are effective.

Proof. A function with unary input alphabet is k-repetitive for all k ⩾ 1 by Example 6.15. ◀

Another consequence of Theorem 6.17 is presented in Corollary 6.20 and depicted in Figure 6.21.

Corollary 6.20 (Npoly ∩ Zblind = Nblind)

N-polyblind functions are exactly theN-polyregular functions which are Z-polyblind.

Proof. Any function of Nblind belongs both to Npoly and Zblind. Conversely, if a function f be-
longs both toZblindk andNpolyℓ for some k, ℓ ⩾ 0, then |f(u)| = O(|u|min(ℓ,k)) and therefore by
Theorem 5.25 one can assume that ℓ ⩽ k. By Theorem 6.17, f is k-repetitive and thus ℓ-repetitive.
Finally we get f ∈ Nblindℓ by applying the other direction of Theorem 6.17. ◀

We also observe that Theorems 5.25 and 6.17 provide an optimization result for S-polyblind func-
tions (the result for S := N is also a consequence of Theorem 3.12, but it is not the case of S := Z).

Corollary 6.22 (Optimization of blind pebble transducers with commutative output)

Let S := Z or N. Let f ∈ Sblind and k ⩾ 0, then f ∈ Sblindk if and only if |f(u)| = O(|u|k).
This property is decidable. If it holds, one can build a blind k-counting transducer computing f .

7This result was first claimed by Nguyên and Pradic in an unpublished note on polyregular functions with unary input.

Jump to contents

152 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

Z-POLYREGULAR

N-POLYREGULAR

Z-POLYBLIND

N-POLYBLIND

0n1# · · ·#0nm 7→
∑m

i=1(−1)nin2
i

map-power2 : 0
n1# · · ·#0nm 7→

∑m
i=1 n

2
i

u 7→ (|u|a + |u|b)2

u 7→ (|u|a − |u|b)2 for a ̸= b

Figure 6.21: Relationship between S-polyregular and S-polyblind functions for S = N and Z.

Proof. Let f ∈ Sblind be such that |f(u)| = O(|u|k). We get f ∈ Spolyk by Theorem 5.25 and
furthermore f is k-repetitive by Theorem 6.17. Thus one can build a blind k-counting transducer
which computes f by Theorem 6.17. The converse is obvious. ◀

The reader may ask whether the notion repetitiveness can be simplified to obtain a simpler semantic
characterization. The author believes that considering 1-repetitiveness instead of k-repetitiveness is
sufficient, however he is not aware of a proof of this more precise result.

6.3 Repetitive functions and permutable counting transducers

Let S := Z orN. In order to show the optimization result for S-polyregular functions in Chapter 5 (and
the comparable results in Chapter 3) we have relied on an equivalence between the semantic condition
|f(u)| = O(|u|k) and the decidable property of counting transducers called pumpability. In the current
setting of S-polyblind functions, our goal is to use repetitiveness as a semantic condition and to replace
pumpability by the concept of permutability which will be introduced in Section 6.3.2.

Formally, let f : A∗ → S be computed by a k-counting transducerT . In a perfect world, the author
would aim at showing that the following conditions are equivalent:

(1) f is S-polyblind; (2) f is k-repetitive; (3) T is permutable.

We show Item (1)⇒ Item (2) in Section 6.3.1 and Item (2)⇒ Item (3) in Section 6.3.2. However, we do
not know whether Item (3)⇒ Item (1) holds. We shall see in Sections 6.4 and 6.5 that permutability can
nevertheless be used as a tool to build an inductive and effective proof of Item (2)⇒ Item (1).

6.3.1 Polyblind functions are repetitive

Let us observe that repetitiveness is preserved under the basic operations which build the class Zblind.

Claim 6.23 (Preservation of repetitiveness under ·,+ and×)

Let k ⩾ 0, δ ∈ Z and f, g : A∗ → Z be k-repetitive. Then δ ·f , f+g, and f × g are k-repetitive.

Proof idea. Let Ωf (resp. Ωg) be the constant Ω given by Definition 6.13 for f (resp. for g), then
the constantΩfΩg is suitable for f +g and f ×g. Indeed, fix s, v0, u1, v1, . . . , uk, vk, t ∈ A∗ and

Jump to contents

6.3. REPETITIVE FUNCTIONS AND PERMUTABLE COUNTING TRANSDUCERS 153

let F (resp. G) the function given by Definition 6.13 for f (resp. for g), then F +G (resp. F ×G)
shows the result for f + g (resp. f × g). Furthermore Ωf is suitable for δ · f . ◀

By combining Claim 6.23 with the properties of S-regular functions, we obtain Lemma 6.24.

Lemma 6.24 (Polyblind⇒ repetitive)

Let8 S := Z orN. A S-polyblind function is k-repetitive9 for all k ⩾ 0.

Proof. Thanks toClaim6.23 andTheorem6.12, it is enough to show the resultwhenf isS-regular,
i.e. computed by a 1-counting transducerT . Let µ : A∗ → T be its transition morphism andΩ be
the idempotence index of T, i.e. the smallest Ω > 0 such thatmΩ is idempotent for allm ∈ T.

Let k ⩾ 1, s, v0, u1, v1, . . . , uk, vk, t ∈ A∗ andN ⩾ 1 be a multiple ofΩ. Define the function
W : Nk → A∗ as we did in Definition 6.13 and let w := W (1, . . . , 1). By definition of Ω
and N , ei := µ(ui

Ω) = µ(ui
N) is an idempotent for all 1 ⩽ i ⩽ k. Hence p := µ(w) =

µ(v0)e1µ(v1) · · · ekµ(vk) = µ(W (X1, . . . , Xk)) is independent of X1, X2, . . . , Xk ⩾ 1 and
e := pN is idempotent. In order to simplify the notations, from now on we assume that s = t = ε.
LetX := X1 . . . , Xk ⩾ 3 and Y := Y1 . . . , Yk ⩾ 3, then we can decompose the productions as
follows thanks to Claim 5.27 and Proposition-Definition 5.31:

f(w2N−1W (X)wN−1W (Y)wN) = prodT (⌊w2N−1⌋ppN−1ppN)

+ prodT (p2N−1 ⌊v0uNX1
1 · · · vk⌋pN−1ppN) + prodT (p2N−1p⌊wN−1⌋ppN)

+ prodT (p2N−1ppN−1 ⌊v0uNY1
1 · · · vk⌋pN) + prodT (p2N−1ppN−1p⌊wN⌋) (6.25)

= prodT (⌊w2N−1⌋ep) + prodT (e⌊wN−1⌋ep) + prodT (e⌊wN⌋)

+ prodT (epN−1 ⌊v0uNX1
1 · · · vk⌋e) + prodT (epN−1 ⌊v0uNY1

1 · · · vk⌋e).

The three first terms do not depend onX or Y , thus only need to focus on the two last ones. We
show in Claim 6.26 how to decompose their productions.

Claim 6.26 (Polynomial of degree⩽ 1)

For allm,n ∈ T, there exists a polynomial L ∈ Z[X1, . . . , Xk] of degree at most 1 such
that prodT (m⌊v0uNX1

1 · · · vk⌋n) = L(X) for allX := X1, . . . , Xk ⩾ 3.

Proof sketch. We decompose prodT (m⌊v0uNX1
1 · · · vk⌋n) as the sum of 2k + 1 terms

using Claim 5.33. Then we apply Claim 5.33 to deal with the terms containing ⌊uNXi
i ⌋ (we

crucially rely on the fact that ei = µ(uNi) is an idempotent). ◀

Thus prodT (epN−1 ⌊v0uNX1
1 · · · vk⌋e) = L(X) and prodT (epN−1 ⌊v0uNY1

1 · · · vk⌋e) =

L(Y) for all X1, . . . , Xk, Y1, . . . , Yk ⩾ 3, for some polynomial L of degree at most 1. Thanks
to Equation (6.25), there exists C ∈ Z such that f(w2N−1W (X)wN−1W (Y)wN) = L(X) +
L(Y) + C for all X1, . . . , Xk, Y1, . . . , Yk ⩾ 3. Since L is a polynomial of degree 1, we finally
obtain the function F of Definition 6.13 by grouping the terms inXi and Yi for 1 ⩽ i ⩽ k. ◀

8The techniques can be adapted to show that this result holds for any commutative monoid S.
9We in fact show a stronger result: the functionF of Definition 6.13 turns out to be a polynomial inX1+Y1, . . . , Xk +Yk .

Jump to contents

154 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

6.3.2 Repetitive functions are computed by permutable transducers

Nowwe describe a necessary condition, named permutability, for a k-counting transducerT to compute
a function f ∈ Sblind. It can be seen as an analogue of pumpability in a different setting. We shall not
show that this condition is sufficient10, however it will be enough for doing an inductive proof.

6.3.2.1 Permutability. Intuitively, permutability of T means that prodT (m0 ⌊u1⌋m1 · · · ⌊uk⌋mk)
only depends on the µ-1-contexts m0µ(u1) · · ·mi ⌊ui⌋mi+1µ(ui+1) · · ·mk for 1 ⩽ i ⩽ k, where
µ : A∗ → T is the transition morphism of T . In particular, this production does not depend on the
relative position of the ui nor on themi which separate them. This behavior is close to that of a blind
k-counting transducer, as explained above when comparing Algorithms 5.13 and 6.8.

L Re m0e1 ⌊u1⌋ e1m1e2 ⌊u2⌋ e2m2e3 ⌊u3⌋ e3m3 e

= e1 = e2 = e3

= e

= left1 = right1
= left2 = right2

= left3 = right3

(a) A µ-(3, 23|T|)-iterator and the definition of leftj and rightj for 1 ⩽ j ⩽ 3.

L Rleft3 ⌊u3⌋ right3 left1 ⌊u1⌋ right1 left2 ⌊u2⌋ right2

(b) Separating the ⌊uj⌋ with the leftj and rightj , and permuting them with σ.

Figure 6.27: Productions which must be equal in Definition 6.28, with x = 3 and σ = (3, 1, 2).

Definition 6.28 (Permutable counting transducer)

Let T be a k-counting transducer whose transition morphism is µ : A∗ → T. We say that T is
permutable if for all (ℓ, x, r) ∈ Sk , for all µ-(ℓ, 23|T|)-iterator L, for all µ-(r, 23|T|)-iterator R,
for all µ-(x, 23|T|)-iteratorm0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmx such that e := m0e1m1 · · · exmx is
idempotent, for all permutation σ of [1:x], the following holds.

Define leftj := em0e1 · · ·mj−1ej and rightj := ejmj · · · exmxe for 1 ⩽ j ⩽ x, then:

prodT

(
L e m0m0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmx eR

)
=prodT

Ä
L leftσ(1) ⌊uσ(1)⌋ rightσ(1) · · · leftσ(x) ⌊uσ(x)⌋ rightσ(x) R

ä
.

A visual representation of permutability is depicted in Figure 6.27. Observe that this property is
decidable for the same reasons than those for which pumpability was decidable. Indeed, it suffices to
range over all (ℓ, x, r) ∈ Sk and all µ-(ℓ, 23|T|)-iterators, µ-(r, 23|T|)-iterators, µ-(x, 23|T|)-iterators
(there are finitely many of them) and permutations σ, and to compute their productions.

6.3.2.2 Repetitiveness implies permutability. The remainder of Section 6.3.2 is devoted to showing
that a k-counting transducer which computes a k-repetitive function f : A∗ → Z is permutable. The
proof of this result is based on the iteration techniques developed in Section 5.3.3.

10The author does not know whether this property hold or not.

Jump to contents

6.3. REPETITIVE FUNCTIONS AND PERMUTABLE COUNTING TRANSDUCERS 155

In Lemma 6.29, we roughly show that repetitiveness of the function implies that the counting trans-
ducer is permutable when restricting the condition to permutations σ : [1:x]→ [1:x] such that σ(j) =
x for some 1 ⩽ j ⩽ x, σ(i) = i for 1 ⩽ i < j and σ(i) = i−1 for j < i ⩽ x.

Lemma 6.29 (Repetitive⇒ Permutable with a simple permutation)

Let k,K ⩾ 0 and f : A∗ → Z be a k-repetitive function computed by a k-counting transducer
T with transition morphism µ : A∗ → T. For all (ℓ, x, r) ∈ Sk , for all µ-(ℓ,K)-iterator L,
for all µ-(r,K)-iterator R, for all µ-(x,K)-iterator m0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmx such that
e := m0e1m1 · · · exmx is idempotent and for all 1 ⩽ j ⩽ x, we have the following:

prodT (L em0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmxeR)

= prodT

Ñ
L em0

(
j−1∏
i=1

ei ⌊ui⌋eimi

)
ejmj

Ñ
x∏

i=j+1

ei ⌊ui⌋eimi

é
e (leftj ⌊uj⌋ rightj)R

é
.

Proof. The idea is to build a word in which the two productions compared in Lemma 6.29 oc-
cur. Then we shall iterate well-chosen factors in this word and use the repetitiveness of f to
show that these productions must be equal. Let N ⩾ 3 be given by Definition 6.13. We let
L = p0f1 ⌊v1⌋f1 · · · fℓ ⌊vℓ⌋fℓpℓ and R = p′0f

′
1 ⌊v′1⌋f ′1 · · · f ′r ⌊v′r⌋f ′rp′r . For all m ∈ T, let

us fix a word ν(m) ∈ µ−1({m}). Then we define the following functions:
▶ U : Nℓ → A∗, L := L1, . . . , Lℓ 7→ U(L) := ν(p0)v

L1
1 · · · v

Lℓ

ℓ ν(pℓ);
▶ W : Nx → A∗, X := X1, . . . , Xx 7→W (X) := ν(m0)u1

NX1 · · ·uxNXxν(mx);
▶ V : Nr → A∗, R := R1, . . . , Rr 7→ V (R) := ν(p′0)v

′
1
R1 · · · v′r

Rrν(p′r);
Let w := W (1, . . . , 1). Observe that for allX ⩾ 1, µ(W (X)) = µ(w) = e. We define the

function P : Nℓ × Nx × N× Nr → Z which maps (L,X,X ′
j , R) to

f
(
U(L)w2N−1W (X)wN−1W (3, . . . , 3, X ′

j , 3, . . . , 3)w
NV (R)

)
.

whereX ′
j is in position j ofW (3, . . . , 3, X ′

j , 3, . . . , 3).
Let T := L1 · · ·LℓX1 · · ·Xj−1Xj+1 · · ·XxR1 · · ·Rr . By adapting the iteration techniques

of Section 5.3.3, it is easy to show that P is a polynomial whose coefficients in TXj and TX ′
j

describe the productions we are looking for. This intuition is formalized11 in Claim 6.30.

Claim 6.30 (Pumping an iterator of k+1 elements)

For L,X,X ′
j , R ⩾ 2k + 1, P (L,X,X ′

j , R) is a polynomial of Z[L,X,X ′
j , R]and:

▶ the coefficient in TXj of P is α := prodT (L em0e1 ⌊u1⌋e1 · · · ek ⌊uk⌋ekmkeR);
▶ the coefficient in TX ′

j of P is α′ := prodT (L em0

Ä∏j−1
i=1 ei ⌊ui⌋eimi

ä
ejmjÄ∏x

i=j+1 ei ⌊ui⌋eimi

ä
e
(
leftj ⌊uj⌋ rightj

)
R).

Proof idea. Use Claim 5.33 and adapt the proof of Lemma 5.37. ◀

On the other hand, we obtainClaim 6.31 by leveraging the fact that f is k-repetitive. This result
shows that the P (L,X,X ′

j , R) only depends onXj +X ′
j .

11We do not need to assume that f is k-repetitive to show this result. Indeed, it is uniquely related to iterators.

Jump to contents

156 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

Claim 6.31 (Using repetitiveness)

There exists a function F : Nk → N such that for L,X,X ′
j , R ⩾ 2k + 1:

P (L,X,X ′
j , R) = F (L,X1, . . . , Xj−1, Xj+1, . . . , Xx, R,Xj +X ′

j).

Proof. The function f is x-repetitive12 since x ⩽ k. LetL andR be fixed. By using the con-
struction ofP andDefinition 6.13 (with s := U(L) and t := V (R)), one shows thatX,X ′

j 7→
P (L,X,X ′

j , R) is a function ofX1+3, . . . , Xj−1+3, Xj+X
′
j , Xj+1+3, . . . , Xx+3. ◀

From Claim 6.31 we deduce that for L,X,X ′
j , R ⩾ 2k + 1:

P (L,X1, . . . , Xj−1, Xj , Xj+1, . . . , Xx, X
′
j , R)

= P (L,X1, . . . , Xj−1, 2k+1, Xj+1, . . . , Xx, X
′
j+Xj−(2k+1), R).

(6.32)

By developing the polynomial of the last line of Equation (6.32), it is easy to see that the coefficients
in TXj and in TX ′

j of P are equal. Hence Claim 6.30 implies that α = α′. ◀

L Re m0e1 ⌊u1⌋ e1m1e2 ⌊u2⌋ e2m2e3 ⌊u3⌋ e3m3 e

= e

= left2 = right2

(a) Initial production with x = 3.

L Re m0e1 ⌊u1⌋ e1m1e2m2e3 ⌊u3⌋ e3m3 e left2 ⌊u2⌋ right2

= e

= left1 = right1

(b) Production after applying Lemma 6.29 once with x = 3.

L Re m0e1m1e2m2e3 ⌊u3⌋ e3m3 e left1 ⌊u1⌋ right1 left2 ⌊u2⌋ right2

= e

= left3 = right3

(c) Production after applying Lemma 6.29 once again with x = 2.

Figure 6.33: Proof idea for Lemma 6.34 with x = 3 and σ = (3, 1, 2).

Now we are ready to show in Lemma 6.34 that repetitiveness implies permutability.

Lemma 6.34 (Repetitive⇒ Permutable)

A k-counting transducer which computes a k-repetitive function f : A∗ → Z is permutable.

Proof idea. The proof proceeds by induction on x ⩾ 1, while relying on Lemma 6.29 to deal
with the induction step. As an example, the induction steps of the proof are depicted in Figure 6.33
for x = 3 and σ = (3, 1, 2): since u2 has to be the last element after substitution, we first apply
Lemma 6.29 with x = 2 and j = 2 to send it “on the right”, then we do the same with u1. ◀

12Note that 1-repetitiveness is not a priori sufficient. Indeed, the words which surround uXj

i and u′
i
X′

j are not the same.

Jump to contents

6.4. ARCHITECTURES AND INDEPENDENTMULTISETS 157

6.4 Architectures and independent multisets

Let S := Z or N and T be k-counting transducer T which computes a function f : A∗ → S. We
have shown in Section 5.4 that f can effectively be written (sum-depT + sum-indT) ◦ forestµ, where
sum-depT ∈ Spolyk−1. In a perfect world, the author would aim at showing that if T is permutable,
then sum-indT ∈ Sblindk . Thereafter, we would be able to show by induction on k ⩾ 1 that if f is
k-repetitive then f ∈ Sblindk . However, we believe that sum-indT ∈ Sblindk does not hold13.

In order to cope with this difficulty, we show Proposition 6.35 which provides a way to transform
sum-indT into a function of Sblindk , up to allowing an additional error term in Spolyk−1.

Proposition 6.35 (Decomposing sum-indT)

Let S := Z orN, k ⩾ 1 andT be a permutable k-counting transducer with output in S. One can
build two functions sum-ind′T ∈ Sblindk and sum-ind′′T ∈ Spolyk−1 such that:

sum-indT = sum-ind′T + sum-ind′′T .

Proof sketch. In Section 5.4.3, we have shown that the production of a k-counting transducerT
on an independent (multi)set of nodes only depends on its linearization. The latter was a simple
abstraction of the set of nodes and its environment. We improve this result whenT is assumed to
be permutable, by showing that the production only depends on a less precise abstraction named
its architecture. Intuitively, this notion takes into account the fact that some nodes can be permuted.
We then rely on architectures to build the functions sum-ind′T and sum-ind′′T . ◀

The rest of Section 6.4 is devoted to the detailed proof of Proposition 6.35. Formally, we define
architectures in Section 6.4.1 and then justify in Section 6.4.2 that they have a suitable behavior with
respect to productions. We justify in Section 6.4.3 that Proposition 6.35 holds for the N-polyregular
functions which counts the number of sets which have a given architecture in a forest. We conclude the
proof of Proposition 6.35 in Section 6.4.4.

6.4.1 From linearizations to architectures

We first define the notion of architecture of an independent (multi)set of nodes. This abstraction is
roughly a relaxation of the linearization of this set, when forgetting the relative positions of the nodes.
This notion is presented in Definition 6.36 which originates from [Dou22, Definition 6.16].

Formally, the architecture of an independent setM in a forest is defined inductively in the same
fashion as its linearization. The only difference is when we meet an idempotent node which has no
elements ofM in its rightmost nor in its leftmost subtree. In this case, we record themultiset containing
the linearizations of each node taken independently, as a blind counting transducer would do. Recall
that the depth of a node in a tree is defined inductively by starting from root which has depth 1. Given
F ∈ Forestsdµ and t ∈ NodesF , we let depthF (t) ∈ [1:d] be the depth of the node t inF .

Definition 6.36 (Architecture)

Let k ⩾ 0, u ∈ A+,F ∈ Forestsµ(u) andM ∈ IndepkF . We define the architecture ofM inF as a
tree structure which is built inductively as follows:

▶ ifF = a, then14 k = 0. We define archiF (M) := µ(a);

13The intuition is that checking if two nodes are independent requires to compare their relative positions.

Jump to contents

158 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

▶ otherwiseF = ⟨F1⟩ · · · ⟨Fn⟩ with n ⩾ 1:
▶ if k = 0, we set archiF (M) = ⟨µ(u)⟩;
▶ else ifM1 :=M ∩ NodesF1

̸= ∅, we let15:

archiF (M) := ⟨archiF1(M1)⟩ archi⟨F2⟩···⟨Fn⟩(M ∖M1).

▶ else ifMn :=M∩NodesFn
̸= ∅, we define symmetrically:

archiF (M) := archi⟨F1⟩···⟨Fn−1⟩(M ∖Mn) ⟨archiFn
(Mn)⟩.

▶ elseM1 =Mn = ∅ but k > 0, thus n ⩾ 3 and µ(u) is idempotent. We define:

archiF (M) := ⟨{{(linF ({t}), depthF (t)) | t ∈M}}⟩

Example 6.37 (Architecture)

The µ-forest of Figure 2.20 is represented again in Figure 6.38a. The blue circles of this figure
describe an independent set of 3 nodes. Its architecture is given in Figure 6.38b. Let us explain
how it is built. At the root, there is no node ofM in the left subtree, hence we replace this left
subtree by a leaf labelled with µ((−1)(−1)) = µ(1). The right subtree is an idempotent node
whose leftmost and rightmost subtrees have no node inM . We thus replace this idempotent node
by a leaf containing the multiset of the linearizations and depths of the t ∈M .

−1 −1 0 −1 0 0 0 0 0 0 0 0

(a) An independent set of nodes in the µ-forest from Figure 2.20.

µ(1) {{(µ(0)⌊0⌋µ(0), 5), (µ(0)⌊0⌋µ(0), 5), (µ(0)⌊0⌋µ(0), 3)}}

(b) The corresponding architecture.

Figure 6.38: A set of independent nodes and its architecture.

Now we observe that the number of architectures over forests of bounded16 height is finite.

Claim 6.39 (Finite number of architectures)

Let µ : A∗ →M be a morphism into a finite monoid and k ⩾ 0. The following set is finite:

Archiskµ := {archiF (M) |M ∈ IndepkF ,F ∈ Forests3|M|
µ }.

14There are no iterable nodes thus IndepkF = ∅ for k ⩾ 1.
15In this case, wehaveF1 ̸∈M andF2 ̸∈M bydefinitionof independent nodes. ThereforeM1 ∈ Indep|M1|

F1
andM∖M1 ∈

Indepk−|M1|
⟨F2⟩···⟨Fn⟩ . This justifies that the inductive definition of archiF (M) is correct.

16As in previous statements, we shall use the bound 3|M| since Theorem 2.21 builds forests of this height. However, this exact
bound is not useful here and Claim 6.39 also holds for any other bound.

Jump to contents

6.4. ARCHITECTURES AND INDEPENDENTMULTISETS 159

Proof. The set Archiskµ consists of tree structures of height at most 3|M|, whose branching is
bounded by k+3 andwhose leaves have labels in a finite set (either elements ofM, or multisets of at
most k elements of shape (m0 ⌊u⌋m1, d)withm0,m1 ∈M, |u| ⩽ 23|M| and 1 ⩽ d ⩽ 3|M|). ◀

If A ∈ Archiskµ, we say that this architecture has rank k. Observe that the rank is well-defined (i.e.
Archiskµ ∩ Archisℓµ = ∅ for k ̸= ℓ) since it is the sum of the sizes of the multisets which occur inA.

6.4.2 Productions on architectures

Nowwe show that the production of a permutable k-counting transducer over a (multi)set of independ-
ent nodesM only depends on archiF (M). This result enables us to define the notion of production over
an architecture, as we did for µ-k-contexts in Proposition-Definition 5.31. The proof of Proposition-
Definition 6.40 is performed by induction on the structure of the architecture, and we crucially rely on
the permutability of the transducer to deal with the case when this architecture consists of a multiset.

Proposition-Definition 6.40 (Productions on architectures)

Let T be a permutable k-counting transducer whose transition morphism is µ : A∗ → T. Let
A ∈ Archiskµ be an architecture, then for all F ∈ Forests3|T|µ andM ∈ IndepkF such that A =
archiF (M), the value prodFT (M) is the same.

We define the production of T over the architectureA, denoted prodT (A), as this value.

Proof sketch. We show that the following statement holds17 for all 0 ⩽ x ⩽ k andA ∈ Archisxµ:
▶ for allF ,F ′ ∈ Forests3|T|µ ;
▶ for allM ∈ IndepxF andM ′ ∈ IndepxF ′ such that archiF (M) = archiF ′(M ′);
▶ for all (r, ℓ) ∈ Sk−x, for all µ-(ℓ, 23|T|)-iterator L and for all µ-(r, 23|T|)-iteratorR ;

we have prodT (L linF (M) R) = prodT (L linF ′(M ′) R). Proposition-Definition 6.40 follows
from this statement for x = k, thanks to Lemma 5.48 which shows that the production on a lin-
earization is the same as the production on the original independent set. ◀

Let us consider the statement which is claimed in the above proof sketch. The rest of Section 6.4.2 is
devoted to showing this result by induction on the tree structure ofA. We distinguish several cases (the
same disjunction will be used in Section 6.4.3 for showing a different result).

6.4.2.1 Cases for x = 0. In this case, we have either A = a or A = ⟨m⟩ withm ∈ T. Both cases
are similar and we focus on the second one, which implies that µ(wordµ(F)) = µ(wordµ(F ′)) = m.
Therefore we obtain L linF (M)R = L linF (M ′)R and the result follows.

6.4.2.2 CaseA = ⟨A1⟩⟨A2⟩ · · · ⟨Ap⟩,x ⩾ 1,A1 has rankx1 ⩾ 1 and isnot amultiset. Let us define
B := ⟨A2⟩ · · · ⟨Ap⟩ which has rank y := x−x1. It follows from the construction of architectures that
F = ⟨F1⟩⟨F2⟩ · · · ⟨Fn⟩withn ⩾ 1. LetG := ⟨F2⟩ · · · ⟨Fn⟩ andM1 :=M ∩NodesF1

. We necessarily
have archiF1(M1) = A1 and archiG(M∖M1) = B (indeedwe haveM∖M1 ∈ IndepyG). It follows from
the definition of linearizations that linF (M) = linF1(M1)linG(M ∖ M1). Furthermore, linF1(M1)
(resp. linG(M ∖M1)) is a µ-(x1, 23|T|)-iterator (resp. a µ-(y, 23|T|)-iterator) thanks to Lemma 5.48.
Similar results hold forF ′ which can be decomposed as ⟨F ′

1⟩G′ and we have:

prodT (L linF (M)R) = prodT (L linF1(M1)linG(M ∖M1)R)
17Once more, the bound 3|T| is not useful here, but considering such µ-forests will turn out to be sufficient.

Jump to contents

160 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

= prodT (L linF ′
1
(M ′

1)linG′(M ′ ∖M ′
1)R) by induction hypothesis

onA1 and then onB;

= prodT (L linF ′(M ′)R).

6.4.2.3 Case A = ⟨A1⟩⟨A2⟩ · · · ⟨Ap⟩, x ⩾ 1, Ap has rank xp ⩾ 1 and is not a multiset. This case
is similar to the previous one (we consider the rightmost child instead of the leftmost one).

6.4.2.4 Remaining case: A = ⟨M⟩whereM is a multiset. If none of the previous cases occur, we
necessarily haveA = ⟨M⟩ whereM is a multiset of elements (n0 ⌊u⌋n1, d) such that |M| = x.

Let e be the idempotent such that e = n0µ(u)n1 for all (n0 ⌊u⌋n1, d) of M (it is necessarily the
same idempotent by construction of architectures and thanks to Lemma 5.48). Furthermore, we must
have F = ⟨F1⟩ · · · ⟨Fn⟩ and F ′ = ⟨F ′

1⟩ · · · ⟨F ′
n′⟩ with n, n′ ⩾ 3 and e = µ(wordµ(F1)) = · · · =

µ(wordµ(Fn)) = µ(wordµ(F ′
1)) = · · · = wordµ(F ′

n). Furthermore, we haveM ∩ NodesF1 = M ∩
NodesFn =M ′ ∩ NodesF ′

1
=M ′ ∩ NodesF ′

n
= ∅.

It follows from Lemma 5.48 that linF (M) is a µ-(x, 23|T|)-iterator which has shape
e m0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmx e and such that µ(m0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmx) = e. In a similar
fashion, linF ′(M ′) = em′

0e
′
1 ⌊u′1⌋e′1 · · · e′x ⌊u′x⌋e′xm′

x ewithµ(m′
0e

′
1 ⌊u′1⌋e′1 · · · e′x ⌊u′x⌋e′xm′

x) = e.

Now, our goal is to use the permutability of T in order to show that the productions are the same.
For 1 ⩽ j ⩽ x we define leftj := em0e1 · · ·mj−1ej and rightj := ejmj · · · ekmke, and similarly
left′j := em′

0e
′
1 · · ·m′

j−1e
′
j and right′j := e′jm

′
j · · · e′km′

ke. It follows from the last part of Lemma 5.48
and the construction of architectures that:

M = {{(leftj ⌊uj⌋ rightj , dj) | 1 ⩽ j ⩽ x}} = {{(left′j ⌊u′j⌋ right′j , d
′
j) | 1 ⩽ j ⩽ x}}.

for some 1 ⩽ dj , d
′
j ⩽ 3|T|. Therefore there exists a permutation σ of [1:x] such that for all 1 ⩽ j ⩽ x,

u′j = uσ(j), left
′
j = leftσ(j) and right′j = rightσ(j).

By putting everything together, we are ready to show that the productions are the same:

prodT (L linF (M)R)
= prodT (L e m0e1 ⌊u1⌋e1 · · · ex ⌊ux⌋exmx eR)

= prodT

Ä
L leftσ(1) ⌊uσ(1)⌋ rightσ(1) · · · leftσ(x) ⌊uσ(x)⌋ rightσ(x) R

ä
since T

is permutable;

= prodT

(
L left′1 ⌊u′1⌋ right′1 · · · left

′
x ⌊u′x⌋ right′x R

)
= prodT (L e m′

0e
′
1 ⌊u′1⌋e′1 · · · e′x ⌊u′x⌋e′xm′

x eR) since T
is permutable;

= prodT (L linF ′(M ′)R).

This result concludes the inductive proof of Proposition-Definition 6.40.

6.4.3 Counting the number of architectures

We have shown in Proposition-Definition 6.40 that the production of a permutable k-counting trans-
ducer over an independent multiset of nodes only depends on its architecture. Since the number of
architectures is finite by Claim 6.39, this result enables to rewrite the function sum-indT as follows:

sum-indT (F) =
∑

M∈IndepkF

prodFT (M)

Jump to contents

6.4. ARCHITECTURES AND INDEPENDENTMULTISETS 161

=
∑

A∈Archiskµ

∑
M∈IndepkF

archiF (M)=A

prodFT (M) (6.41)

=
∑

A∈Archiskµ

prodT (A)× countA(F)

where countA(F) := |{M ∈ IndepkF : archiF (M) = A}|. It describes the number of independent
(multi)sets of nodes which have architectureA. Nowwe show how to compute this function as a sum of
aN-polyblind function and aN-polyregular function with lower growth.

Observe that the functions countA no longer depend on the productions ofT . Furthermore, thanks
to Equation (6.41), it is sufficient to show Proposition 6.35 for the functions countA with A ∈ Archiskµ.
This is the purpose of Lemma 6.42. Recall thatNpoly−1 only contains the null function.

Lemma 6.42 (Counting architectures)

Let µ : A∗ →M be a monoid morphism and k ⩾ 0. GivenA ∈ Archiskµ, one can build:

▶ a function count′A : (A ∪ {⟨, ⟩})∗ → N ∈ Nblindk;
▶ a function count′′A : (A ∪ {⟨, ⟩})∗ → N ∈ Npolyk−1;

such that countA(F) = count′A(F) + count′′A(F) for allF ∈ Forests3|T|µ .

Proof sketch. The two functions are built simultaneously by a rather involved induction on the
structure ofA. The inductive case disjunction is similar to that of Section 6.4.2. ◀

The rest of Section 6.4.3 is devoted to the detailed inductive proof of Lemma 6.42. Since Forests3|T|µ

is a regular language of (A ∪ {⟨, ⟩})∗, one can assume that the input always belongs to this set.

6.4.3.1 Cases for k = 0. In this case we have either A = a or A = ⟨m⟩ form ∈ M, as observed in
Section 6.4.2.2. Let us assume that A = ⟨m⟩, in this case countA(F) = 1 if F = ⟨F1⟩ · · · ⟨Fn⟩ with
n ⩾ 1 and µ(wordµ(F)) = m and 0 otherwise. Hence countA is the indicator function of a regular
language and therefore it belongs toNpoly0. We let count′A := countA and count′′A := u 7→ 0.

6.4.3.2 Case A = ⟨A1⟩⟨A2⟩ · · · ⟨Ap⟩, k ⩾ 1, A1 has rank k1 ⩾ 1 and is not a multiset. Let us
define the architectureB := ⟨A2⟩ · · · ⟨Ap⟩ which has rank ℓ := k−k1.

Claim 6.43 (Counting product)

countA(F) =
ß

0 if F is not of the form ⟨F1⟩⟨F2⟩ · · · ⟨Fn⟩ with n ⩾ 1
countA1

(F1)× countB(⟨F2⟩ · · · ⟨Fn⟩) otherwise.

Proof. If archiF (M) = ⟨A1⟩B, then F = ⟨F1⟩⟨F2⟩ · · · ⟨Fn⟩ with n ⩾ 1 and furthermore
M ∩ NodesF1 ̸= ∅. IfF has this shape, let G := ⟨F2⟩ · · · ⟨Fn⟩. With these notations, we have:

|{M ∈ IndepkF | archiF (M) = A}|
= |{(M1,M2) |M1 ∈ Indepk1

F1
, archiF1(M1) = A1 andM2 ∈ IndepℓG , archiG(M2) = B}|.

IndeedM 7→ (M ∩ NodesF1
), (M ∩ NodesG) is a bijection between these two sets. ◀

Jump to contents

162 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

By applying Claim 6.43 and using the functions which were built by induction hypothesis, we get for
allF = ⟨F1⟩⟨F2⟩ · · · ⟨Fn⟩ with n ⩾ 1 and G := ⟨F2⟩ · · · ⟨Fn⟩:

countA(F) =
(
count′A1

(F1) + count′′A1
(F1)

)
(count′B(G) + count′′B(G))

= count′A1
(F1)count′B(G)︸ ︷︷ ︸

=:count′A(F)

+ count′A1
(F1)count′′B(G) + count′′A1

(F1)count′B(G) + count′′A1
(F1)count′′B(G)︸ ︷︷ ︸

=:count′′A(F)

.

Now let us justify that the definitions of count′A and count′′A verify our properties. We first observe that
the functions f1 : ⟨F1⟩G 7→ count′A1

(F1) (resp. f2 : ⟨F1⟩G 7→ count′B(G)) belongs to Nblindk1
(resp.

Nblindℓ). Indeed, since the input is assumed to have bounded height, a blind k1-counting transducer
(resp. by a blind ℓ-counting transducer) can detect the ⟩ which matches the first ⟨, and simulate the
computation of count′A1

(resp. count′B) onF1 (resp. G). Hence count′A = f1 × f2 belongs toNblindk by
Lemma 6.10. We show in a similar way, thanks to Lemma 5.19, that count′′A belongs to Spolyk−1.

6.4.3.3 CaseA = ⟨A1⟩⟨A2⟩ · · · ⟨Ap⟩, k ⩾ 1,Ap has rank kp ⩾ 1 and is not amultiset. This case is
similar to the previous one (we consider the rightmost child instead of the leftmost one).

6.4.3.4 Remaining case: A = ⟨M⟩ where M is a multiset. Recall that k = |M| and let e be the
idempotent such that e = m0µ(u)m1for all (m0 ⌊u⌋m1, d) ∈M. GivenF ∈ Forestsµ and a (multi)set
M ∈ IndepkF , we define the multiset18 ContextsF (M) := {{(linF ({t}), depthF (t)) | t ∈ M}}. Intuit-
ively, it describes the information that a blind k-counting transducer can observe aboutM . We have:

count⟨M⟩(F) =


0 if F does not have shape ⟨F1⟩ · · · ⟨Fn⟩

with n ⩾ 3 and µ(F1) = · · · = µ(Fn) = e;∣∣{M ∈ IndepkF |M ⊆ Nodes⟨F2⟩···⟨Fn−1⟩ and ContextsF (M) = M}
∣∣

otherwise.

From now, we assume the input F has shape ⟨F1⟩ · · · ⟨Fn⟩ where µ(F1) = · · · = µ(Fn) = e and
n ⩾ 3 (this is a regular property which can be checked by a blind k-counting transducer).

The construction of count′⟨M⟩ and count′′⟨M⟩ is performed simultaneously by another induction on
|M| = k thanks to Lemma 6.44. This result explains how to remove the occurrences of a given element
(m0 ⌊u⌋m1, d) ofMwhose depth d is minimal19 among the depths of the other elements ofM. Given
a multisetM, we write τ ∈M to denote thatM contains at least one occurrence of τ , i.e. |M|τ ⩾ 1.

Lemma 6.44 (Removing one µ-1-context)

Let τ = (m0 ⌊u⌋m1, d). Assume thatM := M1 ⊎ {{τ‡r}} for some r > 0, that τ ̸∈M1 and for
all (m′

0 ⌊u′⌋m′
1, d

′) ∈M1, one has d ⩽ d′. Then one can build g′ ∈ Nblindr and g′′ ∈ Npolyk−1

such that count⟨M⟩(F) = g′(F)× count⟨M1⟩(F) + g′′(F).

Proof. In order to simplify the notations, we shall assume that neither F1 nor Fn have iterable
nodes, therefore count⟨M⟩(F) = |{M ∈ IndepkF | ContextsF (M) = M}|. Let k1 := k−r ⩾ 0
(this way |M1| = k1) and Candidates(F) := {t ∈ ItersF | ContextsF ({t}) = {{τ}}}.

18Observe that this multiset may have multiplicities even ifM is a set.
19The reason why we consider an element with minimal depth is for using the fact that a node only observes a bounded number

of nodes thanks to (as stated in Claim 2.31). A similar argument was already used in Chapter 3.

Jump to contents

6.4. ARCHITECTURES AND INDEPENDENTMULTISETS 163

We first observe that count⟨M⟩ can be decomposed when fixing itsM1 part:

count⟨M⟩(F) =
∑

M1∈Indepk1
F

ContextsF (M1)=M1

|{M2 ⊆ Candidates(F) |M1∪M2 ∈ IndepkF}| (6.45)

IndeedM 7→ (M ∩ {t | ContextsF ({t}) ̸= {{τ}}},M ∩ {t | ContextsF ({t}) = {{τ}}}) is a
bijection between the set of sets {M ∈ IndepkF | ContextsF (M) = M} and the set of couples of
sets {(M1,M2) | ContextsF (M1) = M1,M2 ⊆ Candidates(F) andM1∪M2 ∈ IndepkF}.

The construction of g′ and g′′ will depend on whether |Candidates(F)| < 3k1 + 2r or not.
This condition is a regular property ofF , thus it can be checked by a blind counting transducer.
First case: if |Candidates(F)| < 3k1 + 2r. We define g′(F) := 0 and g′′(F) := count⟨M⟩(F).

Indeed, it is easy to see that the function g′′ is computed by a k-counting transducer which
ranges over k-tuples of iterable nodes of F . Furthermore, g′′(F) = O(|F|k1) thanks to
Equation (6.45) since for a givenM1, by hypothesis there is only a bounded number of sets
M2 ⊆ Candidates(F) such thatM1 ∪M2 ∈ IndepkF . Therefore g′′ ∈ Npolyk1

by applying
Theorem 5.25 and thus g′′ ∈ Npolyk−1 since k1 < k.

Second case: if |Candidates(F)| ⩾ 3k1 + 2r. This case is more complex. GivenM1 ∈ Indepk1

F
such that ContextsF (M1) = M1, we define:

CandidatesM1
(F) := {t ∈ Candidates(F) | {t} ∪M1 ∈ Indepk1+1

F }

Now we show that this set only removes a bounded number of nodes from Candidates(F).

Claim 6.46 (CandidatesM1
(F) is nearly Candidates(F))

IfM1 ∈ Indepk1

F is such that ContextsF (M1) = M1, then:

|Candidates(F)∖ CandidatesM1
(F)| ⩽ 3k1.

Proof. The nodes of Candidates(F) have depth d, which is ⩽ than the depths of the
nodes of M1. Therefore Candidates(F) ∖ CandidatesM1

(F) is the set of nodes of
Candidates(F) that some node from M1 observes. There are at most 3|M1| = 3k1
such nodes. Indeed, even the nodes ofM1 may observe up to 3|T||M1| nodes (recall
Claim 2.31), there are at most 3|M1| such nodes of depth exactly d. ◀

Recall that≼ is a total ordering defined by t′≼t′ if and only if min(FrF (t)) ⩽ min(FrF (t′)).
Let ≺ be the appropriate strict ordering. Let FirstsM1

(F) denote the set containing the
first 3k1−|Candidates(F) ∖ CandidatesM1(F)| ⩾ 0 elements of CandidatesM1(F) (with
respect to ≼) and similarly let LastsM1(F) := CandidatesM1(F) ∖ FirstsM1(F). Observe
that20|LastsM1

(F)| = |Candidates(F)| − 3k1 ⩾ 2r and furthermore that this value does not
depend onM1, which will be a key argument in the following21.
We say that two nodes t ≺ t′ ∈ LastsM1

(F) are neighbors if there is no t′′ ∈ LastsM1
(F)

such that t ≺ t′′ ≺ t′. For allM1 ∈ Indepk1

F , one can decompose the set which defines the

20By using the inclusions between the various sets, it is easy to show that:

|LastsM1
(F)| = |CandidatesM1

(F)| − |FirstsM1
(F)|

= |CandidatesM1
(F)| − 3k1 + |Candidates(F)| − |CandidatesM1

(F)|
= |Candidates(F)| − 3k1 ⩾ 2r.

21Intuitively, we are looking for independence betweenM1 andM2 in order to obtain a Hadamard product.

Jump to contents

164 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

function count⟨M⟩(F) in Equation (6.45) as follows:

{M2 ⊆ Candidates(F) |M1∪M2 ∈ IndepkF}
= {M2 ⊆ CandidatesM1(F) |M1∪M2 ∈ IndepkF}
= {M2 ⊆ LastsM1(F) |M1∪M2 ∈ IndepkF and no t, t′ ∈M2 are neighbors} (6.47)

⊎ {M2 ⊆ LastsM1
(F) |M1∪M2 ∈ IndepkF and there exist neighbors t, t′ ∈M2}

⊎ {M2 ⊆ CandidatesM1(F) |M1∪M2 ∈ IndepkF andM2 ∩ FirstsM1(F) ̸= ∅}.

Let us define the function Pr : N → N which mapsX ⩾ 0 to the cardinal of the setW of
wordsw ∈ {0, 1}∗ such that |w| = X , |w|1 = r and there are no two consecutive 1 inw.

Claim 6.48 (Pr computes an approximation)

IfM1 ∈ Indepk1

F is such that ContextsF (M1) = M1, then Pr(|Candidates(F)|−3k1)
= |{M2 ⊆ LastsM1

(F) |M1∪M2 ∈ IndepkF and no t, t′ ∈M2 are neighbors}|.

Proof. First note that {M2 ⊆ LastsM1
(F) | M1∪M2 ∈ IndepkF and no t, t′ ∈ M2

are neighbors} = {M2 ⊆ LastsM1(F) | no t, t′ ∈ M2 are neighbors}. Indeed, two
nodes of the second set cannot be dependent by definition of neighbors, hence the con-
ditionM1∪M2 ∈ IndepkF always holds. Recall that |LastsM1

(F)| = |Candidates(F)| −
3k1. Finally, we observe that the definition of Pr corresponds to neighbors. ◀

Now, the key observation is that Pr(|Candidates(F)|−3k1) does not depend onM1. There-
fore it can be computed “independently” from the setM1 which was chosen. Furthermore,
this function is a polynomial in Candidates(F), therefore it isN-polyblind.

Claim 6.49 (Polyblind part)

Let g′(F) := Pr(|Candidates(F)|−3k1), then g′ ∈ Nblindr .

Proof. The function which maps w ∈ W to itself where each 10 factor (excepted the
last one) is replaced by 1, is a bijection betweenW and {w ∈ {0, 1}X−r+1 | |w|r = 1}.
Hence Pr(X) =

(
X−r+1

r

)
= (X−r+1)!

r!(X−2r+1)! , and therefore we obtain:

g′(F) = 1

r!

r−1∏
i=0

(|Candidates(F)|−3k1−r−i+1).

It follows from Lemma 6.10 that r!×g′ ∈ Nblindr . Finally, dividing by r! can be seen as
the post-composition by a sequential function (with both unary input and output alpha-
bets), which is still inNblindr thanks to Theorem 3.6. ◀

If we denote by cM1(F) the cardinal of the two last terms of Equation (6.47), we get:

count⟨M⟩(F) = g′(F)× count⟨M1⟩(F) +
∑

M1∈IndepFk1

ContextsF (M1)=M1

cM1
(F)

︸ ︷︷ ︸
=:g′′(F)

.

It is easy to show that g′′ ∈ Npolyk (it can be computed by ranging over k-tuples of iterable
nodes. Furthermore, g′′(F) = O(|F|k−1): the intuition is that it describes setsM2 which
have one less degree of freedom. Therefore g′′ ∈ Npolyk−1 by Theorem 5.25. ◀

Jump to contents

6.5. SOLVING THE S-POLYBLINDMEMBERSHIP PROBLEM 165

We conclude the case of Section 6.4.3.4 by applying inductively Lemma 6.44.

6.4.4 Decomposing the independent sum

We are ready to conclude the proof of Proposition 6.35. Given a permutable k-counting transducer T
with transition morphism µ : A∗ → T, we define the desired functions as follows:

sum-ind′T :=
∑

A∈Archiskµ

prodT (A)× count′A

sum-ind′′T :=
∑

A∈Archiskµ

prodT (A)× count′′A.

It follows from Equation (6.41) and Lemma 6.42 that sum-indT = sum-ind′T + sum-ind′′T . Furthermore,
these statements also justify that sum-ind′T ∈ Sblindk and sum-ind′′T ∈ Spolyk−1.

6.5 Solving the S-polyblind membership problem

This section is devoted to concluding the proof of Theorem 6.17 (it will directly follow from the more
precise Theorem 6.51), by leveraging the tools introduced in Sections 6.3 and 6.4.

We first recall that a function computed by a permutable k-counting transducer can be decomposed
as the sum of a function of Sblindk and a function of Spolyk−1, which intuitively captures the terms
whose “degree” is not maximal. Lemma 6.50 can be seen as an analogue of Lemma 5.53.

Lemma 6.50 (Permutable⇒ Blind + term of lower degree)

Let S := Z orN and k ⩾ 1. Given a function f : A∗ → S computed by a permutable k-counting
transducer T whose transition morphism is µ : A∗ → T, one can decompose it as follows:

f = (sum-depT + sum-ind′T + sum-ind′′T) ◦ forestµ

where furthermore sum-ind′T ∈ Sblindk and sum-depT + sum-ind′′T ∈ Spolyk−1.

Proof. Combine Propositions 5.42 and 6.35 and Lemma 5.43. ◀

We are ready to show Theorem 6.51, which originates from [Dou22, Theorem 5.1]. This result is
obtained by induction on k ⩾ 1 by using the fact that since sum-depT + sum-ind′′T ∈ Spolyk−1, one can
decide by induction hypothesis whether this function of “lower degree” is S-polyblind. As mentioned in
the introduction of Chapter 6, equivalence between repetitive and S-polyblind functions is not only a
nice consequence of this proof, but also a key ingredient to show the induction step. Indeed, we crucially
rely on the fact that repetitiveness is preserved under subtractions.

Theorem 6.51 (Induction step for S-polyregular→ S-polyblind)

Let S := Z orN and k ⩾ 1. Let f : A∗ → S be computed by a k-counting transducer with output
monoid S. The following conditions are equivalent:

(1) f is S-polyblind;
(2) f is k-repetitive;
(3) T is permutable and (sum-depT + sum-ind′′T) ◦ forestµ ∈ Sblindk−1;

Jump to contents

166 CHAPTER 6. POLYBLIND FUNCTIONSWITH COMMUTATIVE OUTPUT

(4) f is computed by a blind k-counting transducer (i.e. f ∈ Sblindk).

Furthermore this property is decidable and the construction is effective.

Proof. The proof of this result is performed by induction on k ⩾ 1. Item (4)⇒ Item (1) is ob-
vious. Item (1)⇒ Item (2) is exactly Lemma 6.24. Item (3)⇒ Item (4) follows from Lemma 6.50
and Proposition 6.5 for precomposing the sums with the regular function forestµ.

The subtle point is Item (2)⇒ Item (3). To show it we first apply Lemma 6.29 to show that T
is permutable. Now let g := (sum-depT + sum-ind′′T)◦ forestµ, then g ∈ Spolyk−1 by Lemma 6.50
and Proposition 5.7. Furthermore Lemma 6.50 also shows that sum-ind′T ∈ Sblindk , therefore
sum-ind′T ◦forestµ ∈ Sblindk byProposition 6.5. Hence this function isk-repetitive byLemma6.24.
Since g = f − sum-ind′′T ◦ forestµ and the function f is k-repetitive, it follows from Claim 6.23
that g is k-repetitive and therefore (k−1)-repetitive. Since g ∈ Spolyk−1, one can apply Item (2)
⇒ Item (4) by induction hypothesis22 and therefore we get g ∈ Sblindk−1.

Decidability is obtained thanks to Item (3): one can decide ifT is permutable and by induction
hypothesis one can decide if (sum-depT + sum-ind′′T) ◦ forestµ ∈ Sblindk−1. ◀

In Chapter 7, we shall use similar proof techniques (based on jumping inductively between semantic
and syntactic conditions) to decide whether a Z-polyregular function is star-free Z-polyregular. How-
ever, the overall structure of this proof will be quite different: we shall build a canonical model which
describes Z-polyregular functions, which is not the case in Chapter 6.

22The reader is invited to gaze in admiration at this argument. Indeed, as mentioned above, using the robustness of a semantic
condition here becomes a key and nearly magical technique to prove the desired result by induction.

Jump to contents

Chapter 7

Star-free polyregular functions with
commutative output

De la musique avant toute chose,
Et pour cela préfère l’Impair
Plus vague et plus soluble dans l’air,
Sans rien en lui qui pèse ou qui pose.

Paul Verlaine, « Art poétique », Jadis et Naguère

The class of regular languages contains a celebrated subclass of independent interest named star-
free languages, which has been studied since the early days of automata theory. This robust subclass
admits several equivalent descriptions in terms of automata, logics, regular expressions and algebra.
When coming to membership problems, one can decide if a regular language is star-free by effectively
constructing its minimal automaton (or equivalently, its syntactic monoid) which is a canonical object
describing the language, and checking if this machine has a (decidable) aperiodicity property.

Z-POLYREGULAR

STAR-FREE

Z-POLYREGULAR
...

ZSFpoly2

ZSFpoly1

ZSFpoly0
Zpoly0

Zpoly1

Zpoly2
O(n2)

O(n)

O(1)

poly-modulo4 : u 7→ |u||u| mod 4

u 7→ (|u|a−|u|b)2 for a ̸= b ∈ A

poly-parity1 : u 7→ (−1)|u| × |u|

1L : A∗ → {0, 1} for L regular not star-free

1L : A∗ → {0, 1} for L star-free

Figure 7.1: Classes of Z-polyregular functions studied in Chapter 7.

The notion of star-freeness has been shifted from languages to functions, yielding e.g. classes of
star-free regular functions or star-free polyregular functions. Intuitively, they are obtained by forbidding
transducers to check “counting modulo” properties of their input. Multiple characterizations of these

168 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

classes in terms of transducers and logics have been obtained over the past 10 years. However, the related
class membership problems are still open in general and considered as difficult. The goal of Chapter 7 is
to define a robust class of star-free S-polyregular functions and show that one can decide if aZ-polyregular
function is star-free Z-polyregular. The classes are depicted in Figure 7.1.

In Section 7.1 we introduce the class of star-free S-polyregular functions and provide a description
of this class in terms of aperiodic counting transducers and as a natural subclass ofS-rational series. These
results are mere adaptations of those of Chapter 5 for S-polyregular functions in general.

The goal of Section 7.2 is to state the main result of Chapter 7, that is the decidability of the mem-
bership problem fromZ-polyregular to star-freeZ-polyregular. As in Chapter 5 with repetitiveness, we
introduce a semantic condition named smoothness and show that it characterizes star-freeZ-polyregular
functions among the Z-polyregular ones. This result has several low hanging consequences. In particu-
lar, it enables to easily build separating examples between the two classes (see Figure 7.1). Furthermore,
it yields an optimization result for star-free Z-polyregular functions.

The proof of the membership result from Z-polyregular to star-free Z-polyregular goes over Sec-
tions 7.3 to 7.5. It proceeds by induction as the proof of Chapter 6 does and uses smoothness as a key tool
for the induction step. However, a major difference with Chapter 6 is that we show in Section 7.3 that
given a Z-polyregular function, it is possible to build canonical objects named the residual transducers of
this function. Thesemachines are inspired by the residual automaton of a regular language. We then show
that star-freeness faithfully translates to an aperiodicity syntactic property for residual transducers.

In Section 7.6, we develop other characterizations of (star-free) Z-polyregular functions by means
of eigenvalues of matrices in Z-weighted automata. Finally, we discuss in Section 7.7 why it seems hard
to generalize the constructions of this chapter to the membership problems for star-freeN-polyregular
functions or even (word-to-word) star-free regular functions. However, we conjecture that using se-
mantic characterizations may still be relevant in this setting, at the cost of a combinatorial effort.

The contributions presented in this chapter are based on the results of [CDL23].

7.1 Star-free polyregular functions with commutative output

The class of star-free languages is a robust subclass of regular languages obtained by forbidding Kleene
star in regular expressions (but allowing complementations instead). The study of this class goes back
to Schützenberger’s celebrated theorem [Sch65] which characterizes star-free languages as those whose
syntactic monoid is aperiodic1, which implies that star-freeness is decidable. The class of star-free lan-
guages enjoys other equivalent descriptions, e.g. in terms of first-order logics (see [MP71]). Furthermore,
a great number of subclasses of star-free languages have been studied (see e.g. [Pin84]).

The notion of aperiodicity can be shifted frommonoids to machines, as explained in Definition 7.2.

Definition 7.2 (Aperiodicity)

A machine is said to be aperiodic whenever its transition monoid is aperiodic.

Following Definition 7.2, Schützenberger’s theorem can be reformulated by saying that a language
is star-free if and only if it can be computed by some finite automaton which is aperiodic, or equivalently
if the minimal automaton of this language is so. From this point of view, it is thus very natural to define
functional counterparts of star-free languages by starting from aperiodic transducers. In particular, the

1Recall that a monoidM is aperiodic if there exists Ω ⩾ 0 such thatmΩ = mΩ+1 for allm ∈ M.

Jump to contents

7.1. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT 169

class of star-free regular functions2 is defined as the class of word-to-word functions which are computed
by aperiodic 2DT. This class has been explored in detail and equivalent descriptions in terms of logics
(thanks to first-order transductions, a restriction of theMSO transductions from Section 1.2.4.2) [FKT14,
CD15, DJR18], or basic combinators [BDK18, DGK21] have been obtained.

Checking that a 2DT is aperiodic can be tough in practice, but the main intuition is that such a
machine is not able to build the output depending on “counting modulo” properties of its input.

Example 7.3 (Map copy reverse)

The function map-copy-reverse is star-free regular.

Example 7.4 (Polynomial modulo)

If m,n ⩾ 1, we let a mod b be the remainder of the integer division of m by n. The function
u 7→ 1|u|

|u| mod 2

is regular but not star-free regular (see Example 7.20).

One of the current challenges in the theory of regular functions would be to derive analogues of
Schützenberger’s theorem for transductions. However, it is not known3 whether canonical models can
be built for regular functions, therefore Open question 7.5 is believed to be hard.

Open question 7.5 (Regular→ Star-free regular)

Given a regular function, can we decide if it is star-free regular?

As mentioned after Proposition 1.16, Open question 7.5 is nevertheless known to be decidable in
the restricted setting of rational functions thanks to [FGL19, Corollary 5.6]. The proof relies on the
construction of a canonical bimachine which computes a given rational function.

7.1.1 Aperiodic pebble transducers

We say that a pebble transducer or a marble transducer4 is aperiodic whenever all its submachines are
aperiodic. The class of functions computed by aperiodic pebble transducers is said to be the class of star-
free polyregular functions. Basic properties of this class, including closure under composition, are studied
in [Boj18]. Furthermore, an equivalent description in terms of logics (thanks to first-order interpretations,
a restriction of the MSO interpretations of Section 1.3.3.2) is shown in [BKL19, Theorem 7].

Example 7.6 (Squaring functions)

The functions blind-square, square and inner-squaring are star-free polyregular.

As in the rest of Part II, our goal inChapter 7 is to focus on functionswhich have output in a commut-
ative monoid (S,+). The class star-free S-polyregular functions is defined by adapting Definition 5.2
which builds S-polyregular functions from the polyregular ones.

2Even if the terminology star-free regular seems to be redundant, it is necessary to avoid ambiguity with other “star-free”
classes of functions such as star-free polyregular functions.

3It is however known how to build canonical models for regular functions with origin semantics [Boj14].
4The definition would be less obvious for recursive marble transducers. Indeed, the author conjectures that the structure of

recursive calls should also be taken into account to define a notion of aperiodicity for this model.

Jump to contents

170 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

Definition 7.7 (Star-free polyregular functions)

The class of star-free S-polyregular functions is the class of functions of shape sum ◦ g : A∗ → S
where g : A∗ → S∗ is star-free polyregular and sum : S∗ → S is the sum operation in S.

We denote by SSFpoly the class of star-free S-polyregular functions. More precisely, for all k ⩾ 1,
we denote bySSFpolyk the class of functions of shape sum◦g : A∗ → Swhere the function g : A∗ → S∗
is computed by an aperiodic k-pebble transducer. We let SSFpoly0 be the class of functions f : A∗ → S
whose image f(A∗) is finite and such that f−1({δ}) is a star-free language for all δ ∈ S. We also let
SSFpoly−1 be the singleton set which contains the constant function u 7→ 0.

Example 7.8 (Counting letters)

The function nba1,...,ak
: u 7→ |u|a1

× · · · |u|ak
belongs toNSFpolyk .

Observe that when S is finite, we may not have5 SSFpoly0 = SSFpoly (contrary to Claim 5.6 which
states that an analogue result holds for Spoly). However this result holds if S is both finite and aperiodic.
In Chapter 7 we shall mainly focus on the case S := Z when solving membership problems.

7.1.2 Aperiodic counting transducers

Following Definition 7.2, we say that a k-counting transducer is aperiodic if its transitionmonoid is so. If
A is an alphabet, we denote by SFPropk(A) the set of star-free languages overA×{0, 1}k . Observe that
if L ∈ SFPropk(A) then in particular6 L ∈ RegPropk(A). It is easy to see that an aperiodic k-counting
transducer7 has shape (A,S, (δi, Li)1⩽i⩽n) where Li ∈ SFPropk(A) for 1 ⩽ i ⩽ n.

Example 7.9 (Map power)

For all k ⩾ 0, the function map-powerk : 0n1# · · ·#0nm 7→
∑m

i=1 n
k
i can be computed by an

aperiodic k-counting transducer.

Unsurprisingly, we show that the class of functions computed by aperiodic counting transducers
with output S is exactly the class of star-free S-polyregular functions. Theorem 7.10 is an analogue of
Theorem 5.15 and it maintains the connection with marble transducers.

Theorem 7.10 (Aperiodic pebble = Aperiodic marble = Aperiodic counting)

Let S be a commutative monoid. Given f : A∗ → S and k ⩾ 1, the following are equivalent:

(1) f = sum ◦ g for g : A∗ → S∗ computed by an aperiodic k-pebble transducer;
(2) f = sum ◦ g for g : A∗ → S∗ computed by an aperiodic k-marble transducer;
(3) f is computed by an aperiodic k-counting transducer.

The conversions are effective.
5Indeed if S = (Z/2Z,+), the pre-image of {0} under sum ◦ (u 7→ 1|u|) is the set of words of even length, which is not a

star-free language. This case is however artificial since we have created periodicity thanks to the output monoid.
6Given a language L ∈ SFPropk(A), one can build a first-order formula (FO formula for short) φ(x1, . . . , xk) where

x1, . . . , xk are free first-order variables, such that #L(u) is the number of assignments x1, . . . , xk which make φ true in
the model u ∈ A∗ (see e.g. [Tho97]). As for RegPropk(A), we chose to use the formalism of languages instead.

7In [CDL23], the aperiodic counting transducers are built by using FO formulas with free variables instead of languages of
SFProp . They can therefore be seen as a particular case of the FO interpretations from [BKL19]. Once more, we chose not to use
this equivalent formalism, since we never deal with logic in this manuscript.

Jump to contents

7.2. MEMBERSHIP PROBLEM FOR STAR-FREE Z-POLYREGULAR FUNCTIONS 171

Proof idea. We follow mutatis mutandis the proof of Theorem 5.15, while checking that aperiod-
icity is preserved at each step. The only tricky point is that when showing Item (3)⇒ Item (2),
the original proof of Claim 5.16 builds a marble transducer whose submachines use lookarounds,
which can be removed thanks to Theorem 1.30. In the current setting, we obtain a simple marble
transducer whose submachines only use lookarounds to check the belonging of the marked input
to star-free languages. One has to ensure that such star-free lookarounds can be removed while pre-
serving both aperiodicity and origin semantics, which is done e.g. in [CD15, Theorem 20]. ◀

7.1.3 Star-free S-polyregular functions as S-rational series

Now we intend to characterize the class of star-free S-polyregular functions as a natural subclass of
(S,+,×)-rational series for S := Z orN. This section is a mere adaptation of Section 5.2.

We first give an analogue of Lemmas 5.19 and 5.21. The single difference with these previous results
is that we replace indicator functions of regular languages by those of star-free languages.

Lemma 7.11 (Closure properties of star free S-polyregular functions)

LetS := ZorN. The class of star-freeS-polyregular functions is closed underHadamard products
and Cauchy products. More precisely, if f ∈ SSFpolyk and g ∈ SSFpolyℓ, then
f⊗g ∈ SSFpolyk+ℓ+1 and f × g ∈ SSFpolyk+ℓ.

Furthermore, for all k ⩾ 0, the following equality holds and the conversions are effective:

SSFpolyk+1 = SpanS({1L⊗f | L star-free language, f ∈ SSFpolyk}).

Proof idea. We follow mutatis mutandis the proofs of Lemmas 5.19 and 5.21. ◀

Example 7.12 (Counting letters)

The function nba : u 7→ |u|a belongs toZSFpoly1 and it can bewritten as1A∗a⊗1A∗ . In a similar
way, the function nba,b ∈ ZSFpoly2 can be written as 1A∗a⊗1A∗⊗1bA∗ + 1A∗b⊗1A∗⊗1aA∗ .

Finally, let us state Theorem 7.13 which is an analogue of Theorem 5.22. This result justifies the
“star-free” terminology for star-free Z-polyregular functions.

Theorem 7.13 (Star-free S-polyregular functions as S-rational series)

Let S := Z or N. A function f : A∗ → S is star-free S-polyregular if and only if it belongs
to smallest class of functions of type A∗ → S containing the indicator functions of star-free
languages and closed under external products, sums and Cauchy products.

Proof idea. We leverage Lemma 7.11. ◀

7.2 Membership problem for star-free Z-polyregular functions

The goal of this section is to state the main result of Chapter 7, which claims that one can decide if
a Z-polyregular function is star-free. We also provide a semantic condition called smoothness which
characterizes the star-free Z-polyregular functions. As in the proof of Chapter 6, this characterization
will turn out to be a key ingredient in the proof of the decidability result.

Jump to contents

172 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

7.2.1 Smooth functions

We first introduce the notion of smoothness for S-polyregular functions. It will serve as a semantic char-
acterization of star-freeness, in the same way as repetitiveness for S-polyblind functions in Chapter 6.

Recall from Schützenberger’s theorem that a regular language L ⊆ A∗ is star-free if and only if its
syntactic monoid is aperiodic. In other words, there must exist Ω ⩾ 1 such that for all v, u, w ∈ A∗

either vuXw ∈ L for allX ⩾ Ω or vuXw ̸∈ L for allX ⩾ Ω. This result is reformulated in Claim 7.14.

Claim 7.14 (Indicator functions of star-free languages)

A regular language L ⊆ A∗ is star-free if and only if there exists Ω ⩾ 1 such that for all
v, u, w ∈ A∗ the functionX 7→ 1L(vu

Xw) is constant forX ⩾ Ω.

Ourmain goal is to extend Claim 7.14 to star-freeZ-polyregular functions. Recall fromExample 7.8
that the function nba,b : u 7→ |u|a1

×|u|b is star-freeZ-polyregular. The functionX 7→ nba,b(vuXw) =
X2|u|a|u|b+X(|vw|a|u|b+ |vw|b|u|a)+ |vw|a|vw|b is not ultimately constant, but it is a polynomial
inX , which roughlymeans that no periodic behavior occurs when iterating u. This is themain intuition
behind Definition 7.15 which originates from [CDL23, Definition II.29]8.

Definition 7.15 (Smooth function)

Let k ⩾ 1. A function f : A∗ → Z is said to be k-smooth if there exists Ω ⩾ 0 such that for all
v0, u1, v1, . . . , uk, vk ∈ A∗, the function X1, . . . , Xk 7→ f(v0u

X1
1 α1 · · ·uXk

k vk) is a polyno-
mial forX1, . . . , Xk ⩾ Ω.

Example 7.16 (Counting letters)

The function nba1,...,ak
: u 7→ |u|a1

× · · · × |u|ak
is ℓ-smooth for all ℓ ⩾ 1.

Example 7.17 (Polynomial modulo)

Let k ⩾ 1 andA = {a}. The function poly-modulok : u 7→ |u||u| mod k is not 1-smooth. Indeed,
poly-modulok(aX) = XX mod k is not a polynomial, even forX large enough.

Example 7.18 (Polynomial parity)

For all k ⩾ 0, the function poly-parityk : u 7→ (−1)|u| × |u|k is not 1-smooth. Indeed we have
poly-parityk(aX) = (−1)XXk which is not a polynomial, even forX large enough.

7.2.2 Decidability result of star-free inside Z-polyregular

Now we are ready to decide and characterize the star-free functions among the Z-polyregular ones.
Theorem 7.19 originates from [CDL23, Theorem V.8] and its proof goes over Sections 7.3 to 7.5.

As mentioned in the beginning of Chapter 7, the proof of Theorem 7.19 does not rely on factoriza-
tion forests but on building canonical objects for Z-polyregular functions. Indeed, the function forestµ

8The terminology used in [CDL23] is ultimately 1-polynomial instead of smooth. We chose to modify it here here in order to
prevent confusion with the polynomials theirselves and since the term smooth better conveys the absence of periodic behaviors.

Jump to contents

7.2. MEMBERSHIP PROBLEM FOR STAR-FREE Z-POLYREGULAR FUNCTIONS 173

from Theorem 2.21 is regular, but it has no reason to be star-free regular in general9, thus doing a pre-
composition by this function is not relevant in our setting (contrary to Chapter 6).

Theorem 7.19 (Z-polyregular→ Star-free Z-polyregular)

A function f ∈ Zpolyk is star-freeZ-polyregular if and only if it is (k+1)-smooth. This property
is decidable. If it holds, one can build an aperiodic k-counting transducer which computes f .

Proof sketch. We first show that given a function f ∈ Zpolyk , one can build nearly10 canonical
machines which compute f , called its k-residual transducers. The construction of such machines is
inspired by the residual automaton of a regular language, which is well-known to reveal inform-
ations on the semantic properties of the language. A k-residual transducer can also be seen as a
variant of a marble transducer which calls functions of Zpolyk−1 on suffixes of its input.

Themain proof is done by induction onk ⩾ 1, by showing that if f is (k+1)-smooth then itsk-
residual transducer has an aperiodicity property and that furthermore it calls functions ofZpolyk−1

which are k-smooth (therefore they belong to ZSFpolyk−1 by induction hypothesis). We then re-
combine these elements to show that f belongs to ZSFpolyk . For decidability, we rely on the fact
that aperiodicity is decidable. Formally, Theorem 7.19 follows from Theorem 7.54. ◀

We shall see in Section 7.6 that 1-smoothness turns out to be sufficient to characterize star-freeness.
However, the author is not aware of away to adapt these result forN-polyregular functions. Theobstacles
towards a generalization are discussed in detail in Section 7.7.

Let us provide low hanging consequences of Theorem 7.19. By leveraging Example 7.18, we first
provide in Example 7.20 separating examples between Z-polyregular and star-free functions.

Example 7.20 (Polynomial modulo and parity)

The functions poly-modulok : u 7→ |u||u| mod k and poly-parityk : u 7→ (−1)|u| × |u|k are not
1-smooth, as shown in Examples 7.17 and 7.18. Hence they are respectively N-polyregular and
Z-polyregular, but neither star-freeN-polyregular nor star-free Z-polyregular.

We also observe that Theorems 5.25 and 7.19 provide an optimization result for star-free functions.
Corollary 7.21 is an analogue of Corollary 6.22 which was shown for S-polyblind functions.

Corollary 7.21 (Optimization of aperiodic pebble transducers with commutative output)

Let f ∈ ZSFpoly and k ⩾ 0, then f ∈ ZSFpolyk if and only if |f(u)| = O(|u|k). This property
is decidable. If it holds, one can build an aperiodic k-counting transducer computing f .

Proof. Let f ∈ ZSFpoly be such that |f(u)| = O(|u|k). We get f ∈ Spolyk by Theorem 5.25 and
furthermore f is (k+1)-smooth by Theorem 7.19. Thus one can build an aperiodic k-counting
transducer which computes f by Theorem 7.19. The converse is obvious. ◀

Remark 7.22 (Relation with the results of [DG19])

[DG19] introduces a notion of aperiodicity for Z-weighted automata which defines a notion of

9 Consider e.g. the forests obtained with the morphism µ : {a}∗ → Z/2Z such that µ(a) = 1.
10There may be several k-residual transducers, but building any of them will be sufficient for our proof.

Jump to contents

174 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

star-free Z-rational series. However, this class is radically different from star-free Z-polyregular
functions: the functions poly-parity or 1even are considered as star-free in this paper.

7.3 Residual transducers for Z-polyregular functions

The goal of this section is to show that anyZ-polyregular function can be computed by canonical objects
called its residual transducers. The construction of these machines is built upon the construction of the
residual automaton of a regular language. It is therefore a good candidate for expliciting information
about the intrinsic properties of the function, and in particular its star-freeness.

In Section 7.3.1 we lift the well-known notion of residual from languages to functions. Then we in-
troduce in Section 7.3.2 themodel of suffix deterministic transducer, which can be seen as a very particular
case of counting transducers. We finally show in Section 7.3.3 how, given a Z-polyregular function, it is
possible to build somehow canonical suffix deterministic transducers called residual transducers.

7.3.1 Residuals of a function

Our first goal is to lift the classical notion of residual from languages ofA∗ to functions of typeA∗ → S.
It is well-known that a language is regular if and only if it has a finite number of residuals. Furthermore,
the residuals of a regular language describe its intrinsic behavior since they are connected to its syntactic
monoid through the residual automaton (see e.g. [Car14, Section 1.7]).

Formally, givenL ⊆ A∗ and u ∈ A∗, the residual language u−1L is defined as {w ∈ A∗ | uw ∈ L}.
Our easy generalization to functions originates from [CDL23, Definition IV.1]. Similar definitions are
presented in [Boj14, Section 2.1] when dealing with regular functions in origin semantics.

Definition 7.23 (Residual)

Let S be a commutative monoid, f : A∗ → S and u ∈ A∗. The residual function u▷f : A∗ → S is
defined asw 7→ f(uw). We let Res(f) := {u▷f | u ∈ A∗} be the set of residuals of f .

It is easy to see that u▷1L = 1u−1L hence both notions coincide when dealing with languages. In
particular, the set Res(1L) is finite if and only if L is regular. However, it is easy to observe that neither
S-polyregular functions nor S-rational series have a finite number of residuals in general.

Example 7.24 (Residuals)

The residuals of the function u 7→ |u|2 ∈ Npoly2 are the functions u 7→ |u|2 + 2n|u| + n2 for
n ⩾ 0. The residuals of the function u 7→ (−2)|u| are the functions u 7→ (−2)n+|u| for n ⩾ 0.

Now we show in Claim 7.25 that u 7→ u▷f defines a monoid action of A∗ over A∗ → S, which
(effectively) preserves the classes of functions Spolyk for k ⩾ −1.

Claim 7.25 (Residuals preserve Spolyk)

Let k ⩾ −1, f ∈ Spolyk and u ∈ A∗, then u▷f ∈ Spolyk . The construction is effective.

Proof. The function g : w 7→ uw is regular, thus u▷f = f ◦ g ∈ Spolyk by Proposition 5.7. ◀

Jump to contents

7.3. RESIDUAL TRANSDUCERS FOR Z-POLYREGULAR FUNCTIONS 175

From now onwe focus on the case S := Z. We intend to show that if f ∈ Zpolyk for some k ⩾ 0 the
set Res(f) is finite up to identifying the functions whose difference is inZpolyk−1. In order to formalize
this identification, we first define the equivalence relations∼k for k ⩾ −1.

Definition 7.26 (Zpolyk equivalence)

Given k ⩾ −1 and f, g : A∗ → Z, we let f∼kg if and only if f − g ∈ Zpolyk

We observe that∼k is compatible with ▷ and with the regular combinators which build Zpoly.

Claim 7.27 (Properties of∼k)

For all k ⩾ −1, ∼k is an equivalence relation. Furthermore, the following holds for all u ∈ A∗,
L ⊆ A∗, δ ∈ Z and f, f ′, g, g′ : A∗ → Z:

(1) if f∼kg, then u▷f∼ku▷g and δ · f∼kδ · g;
(2) if f∼kg and f ′∼kg

′ then f + f ′∼kg + g′;
(3) if f ∈ Zpolyk , then u▷(1L⊗f)∼k(u▷1L)⊗f .

Proof. The fact that ∼k is an equivalence relation is obvious from the properties of Zpolyk . For
Item (1) assume that f∼kg, then f−g ∈ Zpolyk and so u▷f − u▷g = u▷(f−g) ∈ Zpolyk by
Claim 7.25. Therefore u▷f∼ku▷g and δ · f∼kδ · g is obvious. Item (2) is trivial. For Item (3), we
proceed by induction on |u|. Indeed a▷(1L⊗f) = (a▷1L)⊗f + 1L(ε) × (a▷f) for all a ∈ A,
therefore we obtain a▷(1L⊗f)∼k(a▷1L)⊗f when f ∈ Zpolyk . ◀

By leveraging Claim 7.27, we obtain Lemma 7.28 which provides a finite abstaction of residuals.

Lemma 7.28 (Finite residuals up to∼k−1)

Let k ⩾ 0 and f ∈ Zpolyk , then the quotient set Res(f)/∼k−1 is finite.

Proof. We first note that u▷(δ · f + η · g) = δ · (u▷f) + η · (u▷g) for all f, g : A∗ → Z,
δ, η ∈ Z and u ∈ A∗. Hence it suffices to show that Lemma 7.28 holds on a set S of functions
such that SpanZ(S) = Zpolyk . For k = 0, we chose S := {1L | L regular} and the result is
clear since regular languages have finitely many residuals. For k ⩾ 1, we use Lemma 5.21 and
choose S := {1L⊗g | g ∈ Zpolyk−1, L regular}. If 1L⊗g ∈ S, then by Claim 7.27 we get
u▷(1L⊗g)∼k−1(u▷1L)⊗g = 1u−1L⊗g. Since the regular languageLhas finitelymany residuals,
there are finitely many∼k−1-equivalence classes for the residual functions of 1L⊗g. ◀

We shall see in Corollary 7.44 that the implication of Lemma 7.28 turns out to be an equivalence.
Observe for the moment that Lemma 7.28 does not hold for Z-rational series. Indeed, Example 7.24
exhibits the Z-rational series f : u 7→ (−2)|u| such that Res(f)/∼k is infinite for all k ⩾ −1.

Finally, we note that∼k is decidable for Z-polyregular functions.

Lemma 7.29 (Decidability of∼k)

Given k ⩾ −1 and f, g ∈ Zpoly, one can decide whether f∼kg holds.

Proof. Let us first recall that f∼−1g if and only if f = g, which is decidable thanks to Corol-
lary 5.24. For k ⩾ 0, the result follows from Theorem 5.25. ◀

Jump to contents

176 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

7.3.2 Suffix deterministic transducers

Given a function f ∈ Zpolyk , our goal is to build in Section 7.3.3 a transducer for f whose states are
based on the finite setRes(f)/∼k−1 (in the spirit of the residual automaton for regular languages). Using
inductively this construction will build a somehow canonical object describing f .

In Section 7.3.2, we first introduce the model of F-suffix deterministic transducer, which originates
from [CDL23, Definition IV.11] (under the less explicit name of F-transducer). It consists in a one-way
deterministic automaton which can call functions from a class F on suffixes of its input. This machine
can roughly be seen as a head of a marble transducer11, with the key differences that two-way moves are
forbidden and that nested calls are performed on suffixes of the input.

Definition 7.30 (Suffix deterministic transducer)

Let F be a set of functions12 which have typeA∗ → Z. A F-suffix deterministic transducer (F-SDT)
T = (A,Q, q0, δ,F, λ, F) consists of:

▶ an input alphabetA;
▶ a finite set of statesQ with an initial state q0 ∈ Q;
▶ a transition function δ : Q×A→ Q;
▶ an output function λ : Q×A→ F;
▶ a final output function F : Q→ Z.

Let us describe the semantics of a F-SDT. Given q ∈ Q, we define by induction on u ∈ A∗ the
value JT Kq(u) ∈ Z. For u = ε, we let JT Kq(ε) := F (q). Otherwise for u ∈ A∗ and a ∈ A we let
JT Kq(au) := JT Kδ(q,a)(u) + λ(q, a)(u). Finally, the function computed by the F-SDT T is defined
as JT K := JT Kq0 : A∗ → Z. Observe that all the functions JT Kq are total.

The extended transition function δ∗ of T is defined as usual by δ∗(q, ua) := δ(δ∗(q, u), a) and
δ∗(q, ε) = q. Using this notation, observe that JT Kq(u) =

∑
vaw=u λ(δ

∗(q, v), a)(w)+F (δ∗(q, u)).
In other words, if Lq := {u ∈ A∗ | δ∗(q0, u) = q} for all q ∈ Q, we have:

JT K(u) =
∑
q∈Q
a∈A

1Lqa⊗λ(q, a) +
∑
q∈Q

F (q) · 1Lq
⊗1{ε}. (7.31)

Thus a F-SDT is more or less performing Cauchy products of shape 1L⊗f for f ∈ F.

Example 7.32 (Suffix deterministic transducers)

We have depicted in Figure 7.33a a Zpoly−1-SDT which computes the indicator function 1aA∗

for A = {a, b}. Since Zpoly−1 = {0}, the output is only determined by the final state. Observe
that this machine can be identified with the residual automaton of aA∗.

In Figure 7.33b we have depicted a Zpoly0-SDT which also computes 1aA∗ . It has a single state
and “hides” its computation into the calls to functions of Zpoly0. One can check for instance that
1 = 1aA∗(aab) = (1− 1aA∗(ab)) + (1− 1aA∗(b))− 1aA∗(ε) + 0.

11However, this model is somehow orthogonal to that of blind pebble transducers, since making calls on suffixes implicitly
means that the calling position is visible. Hence the author believes that the proofs of Chapter 7 do not provide relevant techniques
for solving the membership problems towards S-polyblind functions which were discussed Chapter 6.

12The set F is not assumed to be finite. However, sinceQ andA are so, δ(Q×A) is always a finite subset of F.

Jump to contents

7.3. RESIDUAL TRANSDUCERS FOR Z-POLYREGULAR FUNCTIONS 177

q0

0

q1 1

q2 0

a | 0

b | 0

a,b | 0

a,b | 0

(a) A Zpoly−1-SDT computing 1aA∗ .

q2 0

a | 1−1aA∗

b | −1aA∗

(b) A Zpoly0-SDT computing 1aA∗ .

Figure 7.33: Two suffix deterministic transducers computing 1aA∗ .

7.3.3 Residual transducers

Now, we are ready to show that a function f ∈ Zpolyk can be computed by specific Zpolyk−1-SDT
named its k-residual transducers. Their transition function is uniquely defined by Res(f)/∼k−1.

Definition 7.34 (Residual transducer)

Let k ⩾ 0, let T = (A,Q, q0, δ,Zpolyk−1, λ, F) be a Zpolyk−1-SDT and f : A∗ → Z. We say
that T is a k-residual transducer of f if the following conditions hold:

▶ T computes f ;
▶ Q = Res(f)/∼k−1;
▶ for all u ∈ A∗, u▷f ∈ δ∗(q0, u);
▶ λ(Q,A) ⊆ SpanZ(Res(f)) ∩ Zpolyk−1.

Let L ⊆ A∗ be a regular language. A 0-residual transducer of the indicator function 1L is exactly
the minimal automaton of the language L. In particular, it must be unique. However, for k ⩾ 1 the
k-residual transducer of f ∈ Zpolyk may not be unique: two k-residual transducers share the same
underlying automaton (A,Q, δ), but the labels λ are not required to be the same.

Example 7.35 (Residual transducers)

The Zpoly−1-SDT from Figure 7.33a is a 0-residual transducer of 1aA∗ . The Zpoly0-SDT from
Figure 7.33b is a 1-residual transducer of 1aA∗ . Indeed, b▷1aA∗∼0a▷1aA∗∼01aA∗ , therefore
|Res(1aA∗)/∼0| = 1. Thus a 1-residual transducer of1aA∗ has exactly one state q0. Furthermore
the labels of the transitions belong to SpanZ(Res(1aA∗)) since 1− 1aA∗ = (a▷1aA∗)− 1aA∗ .

Example 7.36 (Counting letters)

Let A := {a, b}. The function nba,b : u 7→ |u|a × |u|b ∈ Zpoly2 has a single residual up to
∼1-equivalence. A 2-residual transducer of nba,b is depicted in Figure 7.38a.

Example 7.37 (Polynomial parity)

Let A := {a}. The function poly-parity1 : u 7→ (−1)|u| × |u| ∈ Zpoly1 has two residuals up to
∼0-equivalence. A 1-residual transducer of g is depicted in Figure 7.38b.

Jump to contents

178 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

q0 0

a | ((a▷nba,b)−nba,b) : u 7→|u|b

b | ((b▷nba,b)−nba,b) : u7→|u|a

(a) A 2-residual transducer of nba,b.

q0

0

q1 −1

a | 0

a | ((aa▷poly-parity1)−poly-parity1) :
u7→2×(−1)|u|

(b) A 1-residual transducer of poly-parity1.

Figure 7.38: Two residual transducers.

The main result of Section 7.3.2 is that one can build a k-residual transducer of any function from
Zpolyk . This is the purpose of Theorem 7.39 which originates from [CDL23, Lemma IV.17]. Its proof
relies on a simple algorithmwhichmimics thewell-known construction of the residual automaton, while
also dealingwith the output labels. Furthermore, it crucially relies on the decidability ofZpolyk−1 inside
Zpolyk (Theorem 5.25) in order to compute the∼k−1-equivalence classes of Res(f).

Theorem 7.39 (Building a k-residual transducer)

Let k ⩾ 0. Given f ∈ Zpolyk , one can build a k-residual transducer of f .

Proof. Since f ∈ Zpoly, recall thatRes(f)/∼k−1 is finite thanks to Lemma 7.28. In order to build
a k-residual transducer, we apply Algorithm 7.40 which computes the set of residuals of f and the
relations between them. In order to simplify the notations, the states of the Zpolyk−1-SDT are not
labelled by the equivalence classes of Res(f)/∼k−1, but directly by elements of the class. During
the computation, the set Q contains the states for which all outing transitions have been created,
whileO contains states for which these transitions have not been created yet.

Algorithm 7.40: Computing a k-residual transducer of f ∈ Zpolyk
1 O := {ε▷f}
2 Q := ∅
3 whileO ̸= ∅ do
4 Choose some u▷f ∈ O
5 for a ∈ A do
6 if ua▷f ≁k−1v▷f for all v▷f ∈ O ⊎Q then
7 O := O ⊎ {ua▷f}
8 δ(u▷f, a) := ua▷f
9 λ(u▷f, a) := (w 7→ 0)

10 else
11 let f▷v ∈ O ⊎Q be such that ua▷f∼k−1v▷f
12 δ(u▷f, a) := v▷f
13 λ(u▷f, a) := ua▷f − v▷f
14 end
15 end
16 O := O ∖ {u▷f}
17 Q := Q ⊎ {u▷f}
18 F (u▷f) := f(u)

19 end

A partial execution of Algorithm 7.40 is depicted in Figure 7.41. In this figure, we assume that

Jump to contents

7.3. RESIDUAL TRANSDUCERS FOR Z-POLYREGULAR FUNCTIONS 179

f , a▷f , b▷f and aa▷f belong to different∼k−1-equivalence classes, while aa▷f∼k−1b▷f . Nodes
are labelled by their creation time. At this stage of the execution, Q = {ε▷f}, O = {a▷f, b▷f}.
The blue dashed node is not created because aa▷f∼k−1b▷f and instead we add the red transition
to b▷f , which corresponds to the “else” branch of line 10 of Algorithm 7.40.

Q O

ε▷f

f(ε) a▷f

f(a)

b▷f f(b)

aa▷f
a|0

b|0

a|0

a|aa▷f−b▷f

0

1

2

Figure 7.41: Example of a partial execution of Algorithm 7.40.

Now, let us justify the correctness and termination of Algorithm 7.40. First, we observe that
the labels on the transitions have shape u▷f − v▷f when ua▷f∼k−1v▷f , hence they describe
functions of SpanZ(Res(f)) ∩ Zpolyk−1 by definition of ∼k−1. Observe that the construction of
these labels is effective since f ∈ Zpolyk and that equivalence is decidable thanks to Theorem 5.25.

For the termination of Algorithm 7.40, we note that it maintains two sets O and Q such that
O ⊎ Q ⊆ Res(f) and for all f, g ∈ O ⊎ Q we have f ̸ ∼k−1g if f ̸= g. Hence the algorithm
terminates since Res(f)/∼k−1 is finite andQ increases at every loop. At the end of its execution,
we have for all q ∈ Q and a ∈ A, that δ(q, a)∼k−1a▷q and λ(q, a) = a▷q − δ(q, a).

Finally, we show that Algorithm 7.40 builds a k-residual transducer of f . For this purpose, we
show by induction on n ⩾ 0 that for all a1, · · · , an ∈ A, if δ∗(q0, a1 · · · ai) = qi and gi :=
λ(qi−1, ai) for all 1 ⩽ i ⩽ n, we have qn∼k−1a1 · · · an▷f and for all u ∈ A∗:

f(a1 · · · anu) =
n∑

i=2

gi(ai · · · anu) + qn(u).

For n = 0 the result is obvious because q0 = f . Now, assume that the result holds for some
n ⩾ 0 and let an+1 ∈ A. Let qn+1 := δ(qn, an+1) and gn+1 := λ(qn, an+1). By induction
hypothesis we have qn∼k−1a1 · · · an▷f therefore an+1▷qn∼k−1a1 · · · anan+1▷f by Claim 7.27.
Because qn+1 = δ(qn, an+1)∼k−1an+1▷qn, then qn+1∼k−1a1 · · · anan+1▷f . Now, let us fix
u ∈ A∗. We have f(a1 · · · anan+1u) =

∑n
i=2 gi(ai · · · anan+1u) + qn(an+1u) by induction

hypothesis. But since gn+1 = λ(qn, an+1) = an+1▷qn−δ(qn, an+1) = an+1▷qn−qn+1 we get
qn(an+1u) = gn+1(u)+ qn+1(u). We conclude the proof that Algorithm 7.40 builds a k-residual
transducer of f by considering u = ε and the definition of the final output function F . ◀

Remark 7.42 (Canonical machine)

In Algorithm 7.40, one needs to “choose” a way to build the states associated to the residuals u▷f
when ranging over the elements ofO and the letters ofA. Different choices may lead to different
k-residual transducers, with the same transitions but different function labels. However, if we fix
a (computable) ordering over A∗ and use it to range over O and A, then Algorithm 7.40 builds a
canonical (i.e. which only depends on the semantics of the input function) machine.

Jump to contents

180 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

Now let us discuss two low-hanging consequences of Theorem 7.39. First, we observe in Corol-
lary 7.43 that Zpolyk−1-SDT exactly compute the class Zpolyk .

Corollary 7.43 (Zpolyk = Zpolyk−1-suffix deterministic transducers)

Let k ⩾ 0. A function f : A∗ → Z belongs to Zpolyk if and only if it can be computed by a
Zpolyk−1-SDT. The conversions are effective.

Proof. Theorem7.39 shows that any function fromZpolyk is effectively computedby itsk-residual
transducer, which is in particular a Zpolyk−1-SDT. Conversely, if f : A∗ → Z is computed by a
Zpolyk−1-SDT, it follows from Equation (7.31) that f can be written as a linear combination of
elements of shape 1L⊗g where g ∈ Zpolyk−1. Therefore f ∈ Zpolyk by Lemma 5.21. ◀

As another side result, we obtain a semantic description of Zpolyk in terms of ∼k−1-equivalence.
Corollary 7.44 provides the converse of Lemma 7.28. It justifies that the class ofZ-polyregular functions
describes a quantitative counterpart of regular languages, built by induction in a layered fashion.

Corollary 7.44 (Zpolyk = Finite residuals up to∼k−1)

For all k ⩾ 0, Zpolyk = {f : A∗ → Z | Res(f)/∼k−1 is finite}.

Proof. Every map in Zpolyk has finitely many residuals up to∼k−1 thanks to Lemma 7.28. Now
let f : A∗ → Z be such that Res(f)/∼k−1 is finite. Observe that Algorithm 7.40 from the proof of
Theorem 7.39 can be applied mutatis mutandis to build a k-residual transducer of f (the only dif-
ference is that it is not effective when f is not explicitly given as function ofZpolyk). This machine
is in particular a Zpolyk−1-SDT. Thanks to Corollary 7.43, it follows that f ∈ Zpolyk . ◀

It follows from [BR11, Corollary 5.4 p 14] that a function f : A∗ → Z is a Z-rational series if and
only if SpanZ(Res(f)) has finite dimension (i.e. it is finitely generated as aZ-module). When comparing
Corollary 7.44 to this result, one obtains new insights on Zpoly: contrary to Z-rational series, this class
has little to do with linear algebra, but it is intrinsically equipped with a layered structure.

7.4 Smooth functions and aperiodic residual transducers

This section can be understood as an analogue of Section 6.3 in the setting for star-free functions. When
deciding if a S-polyregular function was S-polyblind, we have used the notion of repetitiveness together
with the decidable property of permutability for counting transducers. For deciding star-freeness, our
goal is to use smoothness as a semantic condition and to replace permutability for counting transducers
by aperiodicity for residual transducers (to be introduced formally in Section 7.4.2).

Formally, let f ∈ Zpolyk and T be a k-residual transducer of f . In a high-level perspective, the
reader may aim at showing that the following conditions are equivalent:

(1) f is star-free; (2) f is k-smooth; (3) T is aperiodic.

We show Item (1)⇒ Item (2) in Section 7.4.1 and Item (2)⇒ Item (3) in Section 7.4.2 (with the difference
that (k+1)-smooth is needed instead of k-smooth). However, Item (3)⇒ Item (1) has no reason to hold
since aperiodicity of a k-residual transducer will only deal with its transition function and not on its
label functions in Zpolyk−1, while these functions may create non-star-free behaviors. Therefore, we
will show in Section 7.5 how to perform an inductive and effective proof of Item (2)⇒ Item (1).

Jump to contents

7.4. SMOOTH FUNCTIONS AND APERIODIC RESIDUAL TRANSDUCERS 181

7.4.1 Star-free functions are smooth

The goal of Section 7.4.1 is to show that star-free Z-polyregular functions are k-smooth for all k ⩾ 0.
We first recall that the result is well-known for indicator functions of star-free languages.

Claim 7.45 (Smooth indicator functions)

Let L ⊆ A∗ be a star-free language, then 1L is k-smooth for all k ⩾ 1.

Proof idea. Use the aperiodicity of some monoid recognizing L, as for Claim 7.14. ◀

Now we show that smoothness is preserved under the basic operations which build the class Zpoly.

Claim 7.46 (Preservation of smoothness under ·,+ and⊗)

Let k ⩾ 1, δ ∈ Z and f, g : A∗ → Z be k-smooth. Then δ · f , f+g, and f⊗g are k-smooth.

Proof. The result is obvious for δ · f and f+g. We only deal with the case of the Cauchy product.
For this proof, we first re-state in Claim 7.47 a classical result for Cauchy products of polynomials.

Claim 7.47 (Cauchy product of polynomials)

Let P (X,X1, . . . , Xk) andQ(Y, Y1, . . . , Yℓ) be two polynomials, then:

P⊗Q : Z,X1, . . . , Xk, Y1 . . . Yℓ 7→
Z∑

X=0

P (X,X1, . . . , Xk)Q(Z−X,Y1, . . . , Yℓ)

is a polynomial in Z,X1, . . . , Xk, Y1, . . . , Yℓ.

Proof sketch. It suffices to check that the result holds for products of monomials, i.e. for:

(XpXp1

1 · · ·X
pk

k)⊗(Y qY q1
1 · · ·Y

qℓ
ℓ) = (Xp⊗Y q)×Xp1

1 · · ·X
pk

k Y q1
1 · · ·Y

qℓ
ℓ .

Hence the only thing to check is that Z 7→ Xp⊗Xq(Z) =
∑Z

X=0X
p(Z−X)q is a polyno-

mial in Y , which is a classical result for polynomials. ◀

Now let us prove that f⊗g is k-smooth. Let v0, u1, v1, . . . , uk, vk ∈ A∗, then:

(f⊗g)(v0uX1
1 v1 · · ·uXk

k vk) = f(v0u
X1
1 v1 · · ·uXk

k vk)g(ε)

+

k∑
j=0

|vj |−1∑
i=0

f(v0u
X1
1 v1 · · ·u

Xj

j (vj [1:i]))× g((vj [i+1:|vj |])u
Xj+1

j+1 · · · vk) (7.48)

+

k∑
j=1

|uj |−1∑
i=0

Xj−1∑
Y=0

f(v0u
X1
1 v1 · · ·uYj (uj [1:i]))× g((uj [i+1:|uj |])u

Xj−Y−1
j · · · vk)

Since f and g are assumed to be k-smooth (and therefore ℓ-smooth for all 1 ⩽ ℓ ⩽ k), there exists
Ω ⩾ 1 such that for allX1, . . . , Xk ⩾ Ω, the two first lines of Equation (7.48) describe polynomials
inX1, . . . , Xk . Let us focus on the last line. For this case, we observe that for all 1 ⩽ j ⩽ k and

Jump to contents

182 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

0 ⩽ i ⩽ |uj | − 1 the function which mapsX1, . . . , Xk to:

Xj−1∑
Y=0

f(v0u
X1
1 v1 · · ·uYj (uj [1:i]))× g((uj [i+1:|uj |])u

Xj−Y−1
j · · · vk)

is nearly13 the Cauchy product of two polynomials by assumption of smoothness of f and g. We
conclude by using Claim 7.47 to show that this Cauchy product is a polynomial. ◀

Finally, Lemma 7.49 can be seen as an analogue of Lemma 6.24 for repetitiveness.

Lemma 7.49 (Star-free⇒ Smooth)

Let S := Z orN. A star-free S-polyregular function is k-smooth for all k ⩾ 1.

Proof. We apply Theorem 7.13 together with Claims 7.45 and 7.46. ◀

7.4.2 Smooth functions are computed by aperiodic residual transducers

Now we describe a necessary condition, named aperiodicity, for a k-residual transducer to compute a
function f ∈ ZSFpolyk . It can be seen as an analogue of permutability.

Recall that a deterministic automaton is aperiodic if its transition monoid is so. It is easy to see that
this property can be re-written as the absence of elementary loops labelled by a power un of some word
for n > 1. We lift this notion to F-SDT in Definition 7.50 (observe that it does not deal with the set F).

Definition 7.50 (Aperiodic suffix deterministic transducer)

A F-SDT (A,Q, q0, δ,F, λ, F) is said to be aperiodic if its underlying automaton is so, i.e. if for all
q ∈ Q, u ∈ A∗ and n ⩾ 1 such that δ(q, un) = q, we have δ(q, u) = q.

Example 7.51 (Aperiodic F-SDT)

The transducers of Figures 7.33a, 7.33b and 7.38a are aperiodic, while the transducer of Fig-
ure 7.38b is not. Indeed, in this machine we have δ(q0, aa) = q0 but δ(q0, a) ̸= q0.

Now let us show that a k-residual transducer of a (k+1)-smooth function is aperiodic. The proof
of this result heavily relies on the definition of a k-residual transducer which uses∼k−1.

Lemma 7.52 (Smooth⇒ Aperiodic)

Let k ⩾ 0. Let f ∈ Zpolyk which is (k+1)-smooth and let T be a k-residual transducer of f .
Then T is aperiodic.

Proof. LetT = (A,Q, q0, δ,Zpolyk−1, λ, F) be a k-residual transducer of f . Let v, u ∈ A∗ and
suppose that δ(q0, v) = δ(q0, vu

n) for some n ⩾ 1. We want to show that δ(q0, vu) = δ(q0, v).
Since δ(q0, v) = δ(q0, vu

nX) and δ(q0, vu) = δ(q0, vu
nX+1) for all X ⩾ 1, it is sufficient

13Recall that smoothness only identifies the terms of this sum with polynomials for Y ⩾ Ω andXj − Y − 1 ⩾ Ω. Formally,
one would have to treat separately the terms in Y ⩽ Ω orXj − Y − 1 ⩽ Ω in order to get a Cauchy product of polynomials.

Jump to contents

7.5. SOLVING THE STAR-FREEMEMBERSHIP PROBLEM 183

to show that we have δ(q0, vunX+1) = δ(q0, vu
nX) for some X ⩾ 1. Let Ω ⩾ 1 be the

integer given by Definition 7.15 as a witness of the (k+1)-smoothness of f , we aim at show-
ing that that (vunΩ+1▷f)∼k−1(vu

nΩ▷f), which yields δ(q0, vunΩ+1) = δ(q0, vu
nΩ) by defin-

ition of a k-residual transducer. Therefore by Theorem 5.54, it is sufficient to show that for all
v0, u1, v1, · · · , uk, vk ∈ A∗ we have the following:

|(vunΩ▷f − vunΩ+1▷f)(v0u
Y
1 · · ·uYk vk)| = O(Y k−1)

Because f is (k+1)-smooth, for allX,Y ⩾ Ω, f(vuXv0uY1 · · ·uYk vk) is a polynomial P (X,Y).
We show that |P (nΩ, Y) − P (nΩ+1, Y)| = O(Y k−1). Since f ∈ Zpolyk , we obtain from
Claim 5.52 that P has degree at most k. Therefore it can be written as P0(Y) +XP1(Y) + · · ·+
XkPk(Y) where Pi(Y) is a polynomial in Y of degree at most k − i for all 0 ⩽ i ⩽ k. Thus:

|P (nΩ, Y)− P (nΩ + 1, Y)| =
∣∣∣∣∣

k∑
i=1

Pi(Y)((nΩ)i − (nΩ+1)i)

∣∣∣∣∣
⩽

k∑
i=1

|Pi(Y)|(nΩ + 1)i

since the term P0 vanishes when doing the subtraction. The bound in O(Y k−1) directly follows
since the polynomials Pi(Y) for 1 ⩽ i ⩽ k have degree at most k−1. ◀

7.5 Solving the star-free membership problem

This section is devoted to concluding the proof of Theorem 7.19 (it will directly follow from the more
precise Theorem 7.54), by leveraging the tools introduced in Sections 7.3 and 7.4.

We first observe that a function computed by an aperiodic ZSFpolyk−1-SDT belongs to ZSFpolyk .
Lemma 7.53 can be seen as an analogue of Lemmas 5.53 and 6.50 in the previous chapters. Its proof
basically relies on the fact that an aperiodic finite automaton computes a star-free language.

Lemma 7.53 (Aperiodic⇒ Star-free)

Let k ⩾ 0, an aperiodic ZSFpolyk−1-SDT (effectively) computes a function of ZSFpolyk .

Proof. LetT = (A,Q, q0, δ,Zpolyk−1, λ, F) be an aperiodicZSFpolyk−1-SDTwhich computes
a function f : A∗ → Z. Since the deterministic automaton (A,Q, q0, δ) is aperiodic, it is well-
known that for all q ∈ Q the language Lq := {u | δ(q0, u) = q} is star-free. So is Lqa for all
a ∈ A and q ∈ Q. It follows from Equation (7.31) that f can be written as a linear combination of
1L⊗g where L is star-free and g ∈ ZSFpolyk−1. Therefore f ∈ ZSFpolyk by Lemma 7.11. ◀

We are ready to show Theorem 7.54, which originates from [CDL23, Theorem V.13]. This result is
obtained by induction on k ⩾ 1 by using the fact that since the label functions of a k-residual transducer
belong to Zpolyk−1, then one can decide by induction hypothesis whether these function of “lower de-
gree” are star-free. As in the case of Chapter 6, equivalence between the semantic condition (smoothness)
and star-free functions is not only a nice consequence of this proof, but also a key ingredient within the
induction step. Indeed, we crucially rely on the fact that smoothness is preserved under linear combin-
ations and residuals. All in all, the proof sketch is comparable to that of Theorem 6.51.

Jump to contents

184 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

Theorem 7.54 (Induction step for Z-polyregular→ star-free Z-polyregular)

Let k ⩾ 0 and f ∈ Zpolyk , the following conditions are equivalent:

(1) f is star-free Z-polyregular;
(2) f is (k+1)-smooth;
(3) any k-residual transducer of f is aperiodic and has labels in ZSFpolyk−1;
(4) there exists an aperiodic ZSFpolyk−1-SDT which computes f ;
(5) f is computed by an aperiodic k-counting transducer (i.e. f ∈ ZSFpolyk).

Furthermore, this property is decidable and the constructions are effective.

Proof. The proof of this result is performed by induction on k ⩾ 1. Item (5)⇒ Item (1) is obvious.
Item (1)⇒ Item (2) is exactly Lemma 7.49. Item (3)⇒ Item (4) follows from Theorem 7.39 which
implies that a k-residual transducer exists. Item (4)⇒ Item (5) is exactly Lemma 7.53.

The subtle point is Item (2)⇒ Item (3). To show it we first apply Lemma 7.52 to show that any
k-residual transducer of f is aperiodic. Furthermore, its label functions are (k+1)-smooth since
this property is preserved under taking linear combinations (Claim 7.46) and residuals (which is
obvious). In particular they are k-smooth. Since these functions belong to Zpolyk−1 by definition
of a k-residual transducer, then one can apply Item (2)⇒ Item (5) by induction hypothesis14 and
therefore these label functions (effectively) belong to ZSFpolyk−1.

Decidability is obtained thanks to Item (3): we first compute some k-residual transducer by
applying Theorem 7.39 and we decide if it is aperiodic. Furthermore by induction hypothesis one
can decide if its function labels (which are effectively built) belong to ZSFpolyk−1. ◀

7.6 Aperiodicity through the lens of eigenvalues

In this section, we intend to give another characterization of Z-polyregular functions and star-free Z-
polyregular functions among Z-rational series. These results will provide a new perspective on star-
freeness thanks to eigenvalues15. However, to the knowledge of the author, the techniques of Section 7.6
do not yield an effective decision procedure, contrary to the proof of Section 7.5.

Let (S,+,×) be a semiring. Recall fromDefinition 4.43 that (S,+,×)-rational series are computed
by the model of (S,+,×)-weighted automata. We say that a (S,+,×)-weighted automaton computing
a function f isminimal, when it has a minimal number of states among all the (S,+,×)-weighted auto-
mata which compute f . The study of minimal weighted automata originates from [Sch61a] and plays an
important role16 in the theory of rational series (see e.g. [BR11, Chapter 2] for a survey).

Given a matrix M ∈ Mn,n(C), we let Spec(M) ⊆ C be its spectrum, which is the set of all its
eigenvalues. If S ⊆ Mn,n(C), we let its spectrum Spec(S) :=

⋃
M∈S Spec(M) be the union of the

spectra of its matrices. From now on, the notation | · | is also used for themodulus of a complex number
(which is an extension of the absolute value of real numbers). We let D := {γ ∈ C | |γ| ⩽ 1} be the
unit disc andU := {γ ∈ C | ∃n ⩾ 1, γn = 1} be the set of the roots of unity.

14As in the proof ofTheorem6.51, the reader is invited to gaze in admiration at this argument. Indeed, asmentioned above, using
the robustness of a semantic condition here becomes a key and nearly magical technique to prove the desired result by induction.

15Recall that γ ∈ C is an eigenvalue of a matrixM ∈ Mn,n(C) if there exists 0 ̸= V ∈ Mn,1(C) such thatMV = γV .
16It is in particular used to show that equivalence of (Q,+,×)-rational series is decidable. However, contrary to the case of

automata for languages, there exist in general several distinct minimal (S,+,×)-weighted automata for a rational series. In other
words, a minimal weighted automaton is not in general a canonical object.

Jump to contents

7.6. APERIODICITY THROUGH THE LENS OF EIGENVALUES 185

7.6.1 Spectra for Z-polyregular functions

The goal of Section 7.6.1 is to show Theorem 7.56 which connects the notion ofZ-polyregular function
to the eigenvalues of a minimal weighted automaton computing this function.

As a first step, let us observe in Claim 7.55 how the eigenvalues of a minimal weighted automaton
are revealed by iterating words. This result uses classical arguments from the theory of rational series.

Claim 7.55 (Capturing eigenvalues)

Let f : A∗ → Z be a Z-rational series and (A, [1:n], I, F, µ) be a minimal Q-weighted auto-
maton17 computing f . Let u ∈ A∗ and γ ∈ Spec(µ(u)). There exist αi,j ∈ C for 1 ⩽ i, j ⩽ n
and v1, w1, . . . , vn, wn ∈ A∗ such that γX =

∑n
i,j=1 αi,jf(viu

Xwj) for allX ⩾ 0.

Proof. Let u ∈ A∗, γ ∈ Spec(µ(u)) and 0 ̸= V ∈ Mn,1(C) be such that µ(u)V = γV .
We let ||V || := tV V , observe that this value is a positive real number. It follows from [BR11,
Proposition 2.1 p 32], sinceQ is a field and (A, [1:n], I, F, µ) is a minimalQ-weighted automaton,
that SpanQ({µ(u)F | u ∈ A∗}) = Qn. Hence there exists numbers δj ∈ C and words wj ∈ A∗

such that V =
∑n

j=1 δjµ(wj)F . Symmetrically by [BR11, Proposition 2.1 p 32], there exists
numbers ηi ∈ C and words vi ∈ A∗ such that tV =

∑n
i=1 ηiIµ(vi). Therefore:

γX ||V || = tV µ(u)XV =

n∑
i,j=1

ηiδjIµ(viu
Xwj)F =

n∑
i,j=1

ηiδjf(viu
Xwj).

The result follows by defining αi,j := ηiδj/||V || for all 1 ⩽ i, j ⩽ n. ◀

Theorem7.56 originates from [CDL23, Theorem II.31]. This result provides yet another characteriz-
ation ofZ-polyregular functions amongZ-rational series. The main intuition is that having eigenvalues
whose modulus is strictly greater than 1 leads to exponential behaviors, while Z-polyregular functions
must have polynomial asymptotic growth (recall Theorem 5.22).

Theorem 7.56 (Z-polyregular = eigenvalues are 0 or roots of unity)

Let f : A∗ → Z be a Z-rational series, the following are equivalent:
(1) f is Z-polyregular;
(2) there exists Ω ⩾ 1 such that for all v, u, w ∈ A∗, the function X 7→ f(vuΩXw) is a

polynomial forX large enough;
(3) for all minimalQ-weighted automaton (A,Q, I, F, µ) of f , Spec(µ(A∗)) ⊆ U ∪ {0};
(4) for all minimal Z-weighted automaton (A,Q, I, F, µ) of f , Spec(µ(A∗)) ⊆ U ∪ {0};
(5) there exists a Z-weighted automaton (A,Q, I, F, µ) of f such that Spec(µ(A∗)) ⊆ D.

Proof. For Item (1) ⇒ Item (2), consider a k-counting transducer whose transition monoid is
µ : A∗ → T and which computes the function f . The result is similar to Proposition 2.16 and
it follows from Lemma 5.37 by choosing Ω such that µ(uΩ) is an idempotent of µ(A∗).

For Item (2)⇒ Item (3), let (A, [1:n], I, F, µ) be aminimalQ-weighted automatonwhich com-
putes f . Let u ∈ A∗ and γ ∈ Spec(µ(u)). Thanks to Claim 7.55, there exist αi,j , vi, wj such that
γX =

∑
1⩽i,j⩽n αi,jf(viu

Xwj) for X large enough. By assumption, X 7→ f(viu
ΩXwj) is a

17Recall from Definition 4.43 that in this case we have µ : A∗ → Mn,n(Q).

Jump to contents

186 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

polynomial forX large enough, hence so isX 7→
∑

1⩽i,j⩽n αi,jf(viu
Xwj) = γΩX = (γΩ)X .

This polynomial has to be constant and therefore γΩ ∈ {0, 1}, which implies that γ ∈ {0} ∪ U.
Item (3)⇒ Item (4) follows since aminimalZ-weighted automaton of aZ-rational series is also

a minimalQ-weighted automaton by [BR11, Theorem 1.1 p 121]. Item (4)⇒ Item (5) is trivial.
For Item (5)⇒ Item (1), we use [Bel05, Theorem 2.6] which shows that if Spec(µ(A∗)) ⊆ D

then the coefficients of µ(u) are inO(|u|k) for some k ⩾ 0. Therefore |f(u)| = O(|u|k) (since it
is a combination of the coefficients) and thus f is Z-polyregular by Theorem 5.22. ◀

Beware that Items (3) and (5) do not deal with Spec(µ(A)) but with Spec(µ(A∗)). Using this more
general statement is necessary since the eigenvalues of the product of two matrices may have nothing to
do with the eigenvalues of the two original matrices. In the same vein, the set (Spec(µ(A∗)),×) has no
reason to be a semigroup, even if (U ∪ {0},×) is a monoid.

Example 7.57 (Polynomial parity)

Recall from Example 5.23 that the function poly-parity1 : u 7→ (−1)|u||u| is computed by the
following Z-weighted automaton (which turns out to be minimal):(

A, [1:2],
(
−1 0

)
,

Å
0
1

ã
, µ : u 7→

Å
−1 1
0 −1

ã|u|)
.

The eigenvalues of any matrix in µ(A∗) belong to {±1}.

Since Q is a field, it is well-known (see e.g. [BR11, Chapter 2]) that one can effectively compute a
minimal Q-weighted automaton which computes a Z-rational series. However, given such a machine,
the author is not aware of a direct18 way to decide whether Spec(µ(A∗)) ⊆ D holds.

7.6.2 Spectra for star-free Z-polyregular functions

Now we provide an analogue of Theorem 7.56 when dealing with star-free Z-polyregular functions.
Following the notion of aperiodicity for monoids, the main intuition is that eigenvalues ofU∖ {1} lead
to periodic behaviors of the function since they corresponds to non-trivial subgroups ofU.

Theorem 7.58 (Star-free Z-polyregular = eigenvalues are 0 or 1)

Let f : A∗ → Z be a Z-rational series, the following are equivalent:
(1) f is star-free Z-polyregular;
(2) for all v, u, w ∈ A∗, the functionX 7→ f(vuXw) is a polynomial forX large enough;
(3) for all minimalQ-weighted automaton (A,Q, I, F, µ) of f , Spec(µ(A∗)) ⊆ {0, 1};
(4) for all minimal Z-weighted automaton (A,Q, I, F, µ) of f , Spec(µ(A∗)) ⊆ {0, 1};
(5) there exists aZ-weighted automaton (A,Q, I, F, µ) of f such that Spec(µ(A∗)) ⊆ {0, 1}.

Proof. For Item (1)⇒ Item (2) we rely on Theorem 7.19 since Item (2) describes 1-smoothness.
For Item (2)⇒ Item (3), let (A, [1:n], I, F, µ) be aminimalQ-weighted automatonwhich com-

putes f . Let u ∈ A∗ and γ ∈ Spec(µ(u)). Thanks to Claim 7.55, there exist αi,j , vi, wj such that
γX =

∑
1⩽i,j⩽n αi,jf(viu

Xwj) forX large enough. By assumption,X 7→ f(viu
Xuj) is a poly-

nomial forX large enough, hence so isX 7→
∑

1⩽i,j⩽n αi,jf(viu
Xwj) = γX . This polynomial

has to be constant and therefore we obtain γ ∈ {0, 1}.
18Observe that an “indirect” proof is always possible by combining Theorems 5.22 and 7.56.

Jump to contents

7.7. DISCUSSION: DECIDING STAR-FREENESS FOR OTHERMONOIDS 187

Item (3)⇒ Item (4) follows since aminimalZ-weighted automaton of aZ-rational series is also
a minimalQ-weighted automaton by [BR11, Theorem 1.1 p 121]. Item (4)⇒ Item (5) is trivial.

For Item (5)⇒ Item (1), it is sufficient to show that f is k-smooth for all k ⩾ 0 thanks to19
Theorem 7.19. Because the eigenvalues of thematrixµ(u) ∈ Mn,n(Z) for u ∈ A∗ are all in {0, 1},
its characteristic polynomial splits over the fieldQ, hence there exists P ∈ Mn,n(Q) such that T :=
Pµ(u)P−1 is upper triangular with diagonal values in {0, 1}. In particular, µ(uX) = µ(u)X =
P−1TXP for all X ⩾ 0. It can be shown by induction that the coefficients of X 7→ TX are
polynomials forX large enough, hence so do the coefficients ofX 7→ µ(uX). By doing sums and
products of polynomials, we see that for all k ⩾ 0 and v0, u1, v1, . . . , uk, vk ∈ A∗, the function
X1, . . . , Xk 7→ f(v0u

X1
1 α1 · · ·uXk

k vk) is a polynomial forX1, . . . , Xk large enough. ◀

Observe that the equivalence between Items (1) and (2) in Theorem 7.58 provides a refinement of
Theorem 7.19. Indeed, it means that 1-smoothness is sufficient to characterize the functions of Zpolyk
which are star-free (instead of (k+1)-smoothness). As for Theorem 7.56, the author is not aware of a
way to use Theorem 7.58 for deciding the star-freeness of a Z-polyregular function, even if a minimal
Q-weighted automaton for this function can effectively be computed.

Example 7.59 (Polynomial parity)

It follows from Example 7.57 that poly-parity1 : u 7→ (−1)|u||u| does not belong to ZSFpoly.

As a concluding remark, let us define the class ZSFrat of Z-rational series which are computed by
some Z-weighted automaton (A,Q, I, F, µ) such that Spec(µ(A∗)) ⊆ {γ ∈ R | γ ⩾ 0}. Theor-
ems 7.56 and 7.58 suggest thatZSFrat is a natural candidate for extending star-freeness to the whole class
of Z-rational series. To the knowledge of the author, this class has never been studied in the literature.

Open question 7.60 (Star-free Z-rational series)

Is the class ZSFrat well-behaved? Does it coincide with the closure under some operations of
ZSFpoly together with the series of shape u 7→ δ1

|u|a1 · · · δk|u|ak for δ1, . . . , δk ∈ N ?

7.7 Discussion: deciding star-freeness for other monoids

The goal if this section is to discuss the decidability of star-freeness for other classes of functions. The
main convictionof the author is that, even if building canonicalmodels canbedone e.g. forZ-polyregular
functions (this chapter) or for rational functions20 [FGL19], this strategy is approaching its limits. To the
contrary, it would be relevant to generalize the techniques of Chapter 6, at the cost of dealing with com-
binatorial properties and building variants of factorization forests in a star-free fashion.

7.7.1 Star-freeN-polyregular functions

We first discuss the case of star-freeN-polyregular functions. Observe that Lemma 7.49 shows that such
functions are k-smooth for all k ⩾ 1. Conjecture 7.61 is an analogue of Theorem 7.19, observe that it
would implyNpoly ∩ZSFpoly = NSFpoly and furthermore that an optimization theorem holds for the
classesNpolyk (in the same way as Corollary 7.21 holds for Zpolyk).

19Because this proof relies on the difficult direction of Theorem 7.19, we do not know how to adapt Theorem 7.58 toNSFpoly .
20Recall that word-to-word rational functions have nothing to do with rational series.

Jump to contents

188 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

Conjecture 7.61 (Star-freeN-polyregular functions)

A function f ∈ Npolyk is star-freeN-polyregular if and only if it is (k+1)-smooth. This property
is decidable. If it holds, one can build an aperiodic k-counting transducer which computes f .

However, the author is not aware of a way to adapt the techniques of Chapter 7 to N-polyregular
functions. A major obstacle lies in the construction of the k-residual transducer: even if the input func-
tion is f ∈ Npolyk , the transition labels have no reason to be in Npolyk−1. Indeed, such functions
are obtained in Algorithm 7.40 by doing subtractions between ∼k−1-equivalent residuals of f , which
produces functions of Zpolyk−1, but not necessarily of Npolyk−1. The overall intuition is that making
subtractions to “correct errors” is relevant in group such as Z, but not in the case of a monoid likeN.

Asmentioned above, a radically different proof strategy for Conjecture 7.61would be to forget about
the construction of a canonical model, and show instead that any counting transducer which computes
a star-freeN-polyregular function verifies a decidable structural property. This is exactly what we have
done in Chapter 5 with pumpability and in Chapter 6 with permutability. Such a property for charac-
terizing star-free functions is presented in Example 7.62 in a very simple case.

Example 7.62 (Structural property for 1-counting transducers)

Consider a 1-counting transducer T with transition morphism is µ : {a}∗ → Z/2Z which
computes a 1-smooth N-polyregular function f : {a}∗ → N. There exists α ∈ N such that
prodT (0⌊a⌋1) + prodT (1⌊a⌋0) = 2α and prodT (0⌊a⌋0) = prodT (1⌊a⌋1) = α.

As a consequence, we have f(aX) = αX for allX ⩾ 0 and T can be simulated by an aperiodic
1-counting transducer which always outputs α when processing a letter.

Proof. Since f is 1-smoothwe have f(aX) = αX+β forX large enough. By applyingClaim5.27
on productions we get f(a2X) = X × prodT (0⌊a⌋1) +X × prodT (1⌊a⌋0) and f(a2X+1) =
(X+1)× prodT (0⌊a⌋0) +X × prodT (1⌊a⌋1). Hence we obtain:

prodT (0⌊a⌋1) + prodT (1⌊a⌋0) = 2α = prodT (0⌊a⌋0) + prodT (1⌊a⌋1). (7.63)

Now forX large enough we have f(a2X) = α × (2X) + β = 2αX thus β = 0. Therefore we
obtain f(2X+1) = α× (2X + 1) = 2α+ prodT (0⌊a⌋0) hence prodT (0⌊a⌋0) = α and finally
prodT (1⌊a⌋1) = α thanks to Equation (7.63). ◀

Conversely, onewould have to show that when the structural property holds, the function computed
by the counting transducer is (effectively) star-free. This is where we needed factorization forests in
Chapters 5 and 6, but recall from Footnote 9 that such forests cannot be built in a star-free fashion. Nev-
ertheless Colcombet et al. have shown in [CvGM22, Section 5] that weakened forms of µ-factorization
forests called first-order approximants can be built in a star-free fashion evenwhenµ(A∗) is not aperiodic.
The author believes that this tool can be helpful to deal with Conjecture 7.61.

7.7.2 Star-free regular functions

Now let us briefly deal with word-to-word star-free regular functions (Open question 7.5). It is easy to
see (e.g. by adapting the proof of Proposition 2.16) that if f : A∗ → B∗ is regular, then there exists
Ω ⩾ 1 such that for all v, u, w ∈ A∗, f(vuΩ(X+1)w) has shape α0β

X
1 α1 · · ·βX

n αn for allX ⩾ 0.

We suggest in Conjecture 7.64 that star-free regular functions can be characterized by an according
adaptation of 1-smoothness, in the setting of non-commutative outputs.

Jump to contents

7.7. DISCUSSION: DECIDING STAR-FREENESS FOR OTHERMONOIDS 189

Conjecture 7.64 (Star-free regular functions)

A regular function is star-free if and only if there exists Ω ⩾ 0 such that the following holds.
For all v, u, w ∈ A∗, there exist n ⩾ 0, α0, . . . , αn ∈ B∗ and β1, . . . , βn ∈ B+ such that
f(vuX+Ωw) = α0β

X
1 α1 · · ·βX

n αn for allX ⩾ 0.

By adapting once more the proof of Proposition 2.16, it is easy to see that the condition of Con-
jecture 7.64 is necessary for being star-free. The author believes that such a semantic property can be
decided by transforming it into an equivalent decidable structural property on 2DT.

Jump to contents

190 CHAPTER 7. STAR-FREE POLYREGULAR FUNCTIONSWITH COMMUTATIVE OUTPUT

Jump to contents

Part III

Streaming computability over
infinite words

Chapter 8

Background on transductions of
infinite words

Là-bas, c’est le pays de l’étrange et du rêve,
C’est l’horizon perdu par delà les sommets,
C’est le bleu paradis, c’est la lointaine grève
Où votre espoir banal n’abordera jamais.

Jean Richepin, « Les oiseaux de passage », La chanson des gueux

Automata over infinite words have been studied since the early days of automata theory, following
the seminal work of Büchi [Büc62], whose goal was to decide fragments of second-order arithmetic.
They are roughly defined as automata over finite words, while modifying the acceptance conditions in
order to take into account the infiniteness of the input. Suchmachines enable to lift the notion of regular
languages to infinite words, leading to the celebrated concept of ω-regular languages (see e.g. [PP04]).

REGULAR
Deterministic two-way transducers

withω-lookarounds

SEQUENTIAL
Deterministic one-way

transducers

RATIONAL
Functional non-deterministic

one-way transducers

DETERMINISTIC REGULAR
Deterministic two-way transducers

copy-until : uabω 7→ uauabω for u ∈ {a, b}∗

map-copy-reverseω :

u1#u2# · · · 7→ u1#ũ1#u2#ũ2# · · ·

replace : 0n1a10
n2a2 · · · 7→ a1

n1+1a2
n2+1 · · ·

normalize :
u 7→ u if u ∈ {0, 1}ω and |u|0 = ∞
u01ω 7→ u10ω if u ∈ {0, 1}∗

remove : abcacacbc · · · 7→ bcccbc · · ·

Figure 8.1: Classes of functions over infinite words described in Chapter 8.

This chapter can be seen as the counterpart of Chapter 1 for infinite inputs. More precisely, we shall
define in Sections 8.1 and 8.2 the following machine models over infinite words:

▶ one-way deterministic transducers, which define the class of sequential functions;
▶ one-way non-deterministic transducers, which define the class of rational functions;

194 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

▶ two-way deterministic transducers, which define the class of deterministic regular functions;
▶ two-way deterministic transducers with ω-lookarounds (an adaptation of lookarounds in the setting

of infinite words and ω-regular languages), which define the class of regular functions.

These various classes are compared in Figure 1.1, In Sections 8.1 and 8.2, we explain that both se-
quential, rational and regular functions describe robust classes of transductions of infinite words, as wit-
nessed by various characterizations and algorithmic properties. We also discusswhich classmembership
problems are known to be decidable. The class of deterministic regular functions is briefly presented in
this chapter, but the detailed study of its properties is deliberately postponed to Chapter 9.

When dealing with practical applications, transducers of infinite words can be seen as a model of
streaming algorithms to process arbitrary long inputs. However, the classes of rational and regular func-
tions both suffer from a severe downside when it comes to computability, which is a major difference
with the case of finite words. Indeed, the reader should be convinced that all the functions of finite
words studied in Parts I and II are computable, in the sense that they can be written in any programming
language, or equivalently, computed by a deterministic Turing machine. This is no longer the case over
infinite words: intuitively, the use of non-determinism or ω-lookarounds enables to build the output de-
pending on an ω-regular property of the input (for instance depending on whether it contains infinitely
many times a given letter). However, such properties cannot be verified by a deterministic device.

In Section 8.3, we thus formalize the notion of computability for functions of infinitewords. We recall
that one can decide if a given regular function is computable, i.e. if it can effectively be implemented by
a streaming algorithm, and build a Turing machine of infinite words which computes it. It is conjectured
that the computable regular functions are in fact the deterministic regular ones.

8.1 One-way transductions

The goal of this part is to introduce the notions of sequential and rational functions over infinite words.
If A is an alphabet, recall that Aω denotes the set of infinite words over A. We let A∞ := Aω ∪ A∗.
Transducers of infinite words are built by adding outputs to finite automata of infinite words, which are
classical finite automata with a modified notion of final states. Two notions are well-known:

▶ Büchi final conditions, where a set of final states is given in the description. In this case, an infinite
run labelled by som infinite input is final if it visits infinitely many often a final state;

▶ Muller final conditions, where a set of final sets of states is given. In this case, an infinite run labelled
by some infinite input is final if the set of states visited infinitely often along this run is final.

Non-deterministic or deterministic automata with Muller conditions, or non-deterministic auto-
mata with Büchi conditions, describe the same class of languages of infinite words, called ω-regular lan-
guages and denoted ωRegLang(A) (see e.g. [Tho90] for an introduction to their theory).

We say that an ω-regular language is Büchi deterministic if it can be recognized by a deterministic
automaton with Büchi final conditions. Not every ω-regular language is Büchi deterministic.

Example 8.2 (Non Büchi deterministic language)

LetA = {a, b}, the language {uaω | u ∈ A∗} is ω-regular but not Büchi deterministic.

The next result follows from [Tho90, Theorem 5.3c] and [Tho90, Lemma 5.4].

Jump to contents

8.1. ONE-WAY TRANSDUCTIONS 195

Proposition 8.3 (Deciding Büchi determinism)

One can decide if an ω-regular language is Büchi deterministic. If this property holds, one can
build a Büchi deterministic automaton which computes its.

These two final conditions will also be compared when defining transducer models. Büchi determ-
inistic languages will naturally arise in Chapter 9 when dealing with deterministic regular functions.

8.1.1 Sequential functions

As a first class of functions of infinite words, let us describe the counterpart of sequential functions of
finite words. To the knowledge of the author, the model of one-way deterministic transducer of infinite
words was first investigated in detail in the series of papers [BC00, BC02, BC04].

Definition 8.4 (One-way deterministic transducer of infinite words)

A one-way deterministic transducer of infinite words (1DTω) T = (A,B,Q, q0, F, δ, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with an initial state q0 ∈ Q and final states F ⊆ Q;
▶ a transition function δ : Q×A ⇀ Q;
▶ an output function λ : Q×A ⇀ B∗.

The transition relation→ and the notion of run labelled by a finite or infinite word are defined as
for 1DT (over finite words) after Definition 1.3. We say that a run is initial if it starts in q0 and final if it
visits infinitely often a final state (Büchi final conditions). A run is accepting if it is both initial and final.
The function JT K : Aω ⇀ Bω computed by T is defined as follows. Let u ∈ A∗ be the input, then
JT K(u) is defined if and only if there exists an accepting run p0 a1|α1−−−→ p1

a2|α2−−−→ · · · ofT labelled by
u (it has to be unique) whose output α1α2 · · · is infinite. In this case we let JT K(u) := α1α2 · · · ∈ Bω .

Example 8.5 (Removing a letter)

Let A = {a, b, c}, the function remove : Aω ⇀ {b, c}ω , which removes the a in the input with
domain {u ∈ Aω | |u|b =∞}, is computed by the 1DTω depicted in Figure 8.7a. Final states are
denoted by a double circle (recall that in Figure 1.5 we used instead an outing arrow).

Example 8.6 (Division by 3 in base 2)

Let A = {0, 1}, then any word of u ∈ Aω can be seen as the binary expansion of some real
number 0 ⩽ γ ⩽ 1. The function divide computes the division by 3 on such representations. It is
computed by the 1DTω depicted in Figure 8.7b.

Definition 8.8 (Sequential function of infinite words)

The class of sequential functions is the class of functions computed by 1DTω .

8.1.1.1 Domains and variants of final conditions. Beware that the output produced along the ac-
cepting run of a 1NTω is only taken into account when it is infinite. This restriction forces to define

Jump to contents

196 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

q0 qb

b|b

a|ε
c|c

b|b
a|ε
c|c

(a) 1DTω computing the function remove.

q0 q1 q2

1|0 0|0

0|11|1

0|0 1|1

(b) 1DTω computing the function divide.

Figure 8.7: Functions computed by 1DTω .

functions of type Aω ⇀ Bω and not Aω ⇀ B∞. In fact, this condition can be encoded syntactically:
given a 1DTω , it is easy to build (by doing a product construction) an equivalent 1DTω such that the
output along an accepting run is always infinite. As a consequence, one can observe that the domain of
a sequential function is (effectively) a Büchi deterministic language.

Conversely, the Büchi conditions cannot be encodedwithin the condition on infinite inputs. Indeed,
one cannot systematically make all states final, as observed in Claim 8.9.

Claim 8.9 (Final states matter for the domain)

The function remove from Example 8.5 cannot be computed by a 1DTω with all states final.

Proof idea. If a 1DTω computes remove, it has to produce more or less cn when reading cn (since
otherwise it would not be correct on inputs of shape cnbω). Thus it outputs cω on input cω , and
since this output is infinite, it means that cω would belong to Dom(remove). ◀

In [BC04, Section 2], our sequential functions are called Büchi sequential functions. This paper also
defines the class of Muller sequential functions, by using Muller final conditions instead of Büchi. As
observed in [BC04], a Muller sequential function is simply the restriction of a Büchi sequential function
to an ω-regular language. Hence the difference between them is a simple matter of domains.

8.1.1.2 Basic properties of sequential functions. It easy to see (using a product construction) that
if f : Aω ⇀ Bω is sequential and L ⊆ Dom(f) is Büchi deterministic, then f |L is (effectively) a se-
quential function. Similarly, if L ⊆ Bω is Büchi deterministic (resp. ω-regular), then f−1(L) ⊆ Bω

is (effectively) Büchi deterministic (resp. ω-regular). Using yet another product construction, one can
show that sequential functions are (effectively) closed under composition.

As a major difference with finite words, we do lose generalities when restricting our attention to
total functions. In other words, sequential functions cannot be “completed”. Given f, g : Aω ⇀ Bω ,
we say that g is an extension of f if Dom(f) ⊆ Dom(g) and for all u ∈ Dom(f), f(u) = g(u). The
somehow ad hoc proof of Claim 8.10 will be re-explained in a more comprehensive fashion through the
lens of continuity (with respect to a well-chosen topology) in Section 8.3.

Claim 8.10 (Sequential functions cannot be extended)

There is no sequential function which extends the function remove to {a, b, c}ω .

Proof idea. If a 1DTω computes an extension of remove, it has to produce ε after reading an (since
otherwise it would not be correct on inputs of shape anu with u ∈ {b, c}ω and |u|b = ∞). Thus
it must output ε on input aω , which means that the extension cannot be total. ◀

Jump to contents

8.1. ONE-WAY TRANSDUCTIONS 197

Finally, let us recall that given a sequential function computed by a 1DTω , one can effectively com-
pute a canonical 1DTω which computes it [FGLM18, Section 2].

8.1.2 Rational functions

The study of rational functions of infinite words originates from [CP81]. They are obtained by addingBüchi
final conditions to the model of one-way non-deterministic transducer of finite words.

Definition 8.11 (One-way non-deterministic transducer of infinite words)

A one-way non-deterministic transducer of infinite words (1NTω) N = (A,B,Q, I, F,∆, λ) is:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with initial states I ⊆ Q and final states F ⊆ Q;
▶ a transition relation∆ ⊆ Q× (A ∪ {ε})×Q;
▶ an output function λ : ∆→ B∗.

The semantics of a 1NTω is similar to that of a 1NT (see Definition 1.7). Wewrite q u|α−−→ q′ whenever
(q, u, q′) ∈ ∆ (beware that here u ∈ A ∪ {ε}) and α = λ(q, u, q′). A run labelled by an input word
u1 · · ·un ∈ A∗ is a sequence p0 u1|α1−−−→ q1 · · · un|αn−−−−→ pn. The word α1 · · ·αn ∈ B∗ is said to be
the output along the run. We say that the run is initial if p0 ∈ I , and final if it visits infinitely often an
accepting state. It is accepting if it is both initial and final. The relation JN K ⊆ Aω ×Bω computed by
N , is defined as follows (beware that, here again, we only take infinite outputs into account):

JN K := {(u, α) | α ∈ Bω is output along some accepting run labelled by u}.

Example 8.12 (Suffixes)

The relation suffixes ⊆ Aω ×Aω defined by (u, α) ∈ suffixes if and only if α is an (infinite) suffix
of u can be computed by a 1NTω inspired by the 1NT for factors from Figure 1.5b.

In this manuscript, we shall only focus on functions. The notions of real-time, functional and unam-
biguous 1NTω are defined as before (see Definition 1.9). It follows from [Gir86] and [CG99, Corollary 3]
that a functional 1NTω can be transformed in an equivalent real-time and unambiguous 1NTω .

Definition 8.13 (Rational function of infinite words)

The class of rational functions is the class of functions computed by functional 1NTω .

Unsurprisingly, rational functions are more expressive than the sequential ones. Indeed, it is easy to
show that none of the functions from Examples 8.14 to 8.16 is sequential.

Example 8.14 (Normalization in base 2)

The function normalize : {0, 1}ω ⇀ {0, 1}ω with domain {0, 1}ω ∖ {1ω} which maps u 7→ u if
|u|0 =∞ and u01ω 7→ u10ω if u ∈ {0, 1}∗ is computed by the 1NTω from Figure 8.17a.

Jump to contents

198 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

Example 8.15 (Replacing factors)

The function replace : {0, 1, 2}ω ⇀ {1, 2}ω with domain {x | |x|1 = ∞ or |x|2 = ∞} which
maps 0n1a10

n2a2 · · · 7→ a1
n1+1a2

n2+1 · · · with ai ∈ {1, 2} and ni ⩾ 0 for i ⩾ 0 is computed
by the 1NTω from Figure 8.17b.

Example 8.16 (Doubling factors)

The total function double : {0, 1, 2}ω → {0, 1, 2}ω which maps for ai ∈ {1, 2}:
▶ 0n1a10

n2a2 · · · 7→ 0a1n1a10
a2n2a2 · · · if the input has infinitely many 1 or 2;

▶ 0n1a1 · · · 0nmam0ω 7→ 0a1n1a1 · · · 0amnmam0ω if the input has finitely many 1 or 2.

is computed by the 1NTω from Figure 8.17c.

q0

q1

q2

0|1

0|0

1|1

1|0

1|1

0|0

(a) 1NTω computing normalize.

q0

q1

q2

0|1

1|1

0|2

2|2

0|1

0|2

1|1
2|2

(b) 1NTω computing replace.

q0

q1

q2

0|0

1|1

0|00

2|2

0|0

0|00

1|1
2|2

(c) 1NTω computing double.

Figure 8.17: Functions computed by unambiguous and real-time 1NTω .

8.1.2.1 Domains and final conditions. As for 1DTω , it is easy to transform any 1NTω into an equi-
valent 1NTω such that the output along an accepting run is always infinite. Therefore the domains
of rational functions are ω-regular languages (and not necessarily Büchi deterministic languages). As
observed in [BC04, Section 2], using Muller final conditions instead of the Büchi conditions for non-
deterministic machines would define exactly the same class of functions of infinite words1.

8.1.2.2 Basic properties of rational functions. It easy to see (using a product construction) that if
f : Aω ⇀ Bω is rational and L ⊆ Dom(f) is ω-regular then f |L is (effectively) a rational function.
Similarly, if L ⊆ Bω is ω-regular, then f−1(L) ⊆ Bω is (effectively) ω-regular. Using yet another
product construction, one can show that rational functions are (effectively) closed under composition.

Since ω-regular languages are closed under taking unions and complements, one can always “com-
plete” a partial rational function into a total one, which outputs a distinguished infinite word when the
input is not in the original domain. This differs from the case of sequential functions.

8.1.2.3 Equivalent formalims. The landscape of equivalent formalisms is roughly the same as for
rational functions of finite words. From a logical point of view, this class is captured by a (semantic)
extension of order-preserving MSO transductions to infinite words [FGLM18, Theorem 30].

1This is mainly due to the fact that a non-deterministic automaton with Muller conditions can (rather simply) be transformed
in an equivalent non-deterministic automaton with Büchi conditions.

Jump to contents

8.1. ONE-WAY TRANSDUCTIONS 199

The notion of bimachine can also be extended to infinite words, at the cost of using ω-regular lan-
guages for the “right” part of the machine. This idea originates from [Wil16, Section 3] in the case of
letter-to-letter transductions. A formal definition was given e.g. in [FGLM18, Section 3].

Definition 8.18 (Bimachine of infinite words)

An ω-bimachine B = (A,B, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ an output function λ : RegLang(A)×A× ωRegLang(A)⇀ B∗ such that:

(1) Dom(λ) is finite;
(2) for all (L, a,R) ̸= (L′, a, R′) ∈ Dom(λ),RaL ∩R′aL′ = ∅.

The semantics of an ω-bimachine is defined in a similar fashion to that of a bimachine of finite
words, with the only difference that the suffix starting in some position is now infinite. Furthermore,
we exclude input words whose output is finite. The next result originates from [FGLM18, Theorem 13].

Proposition 8.19 (Rational = Bimachine)

A function of infinite words is rational if and only if it can be computed by an ω-bimachine.

It follows from [FGLM18, Theorem 29] that given a rational function, one can in fact build a canon-
ical ω-bimachine which computes it. This result was used in [FGLM18, Theorem 31] to decide whether
a rational function can be described by an order-preserving first-order transduction.

In the case of finite words, we have shown in Proposition 1.12 that rational functions are composi-
tions of sequential functions (computed by deterministic 1NT) and sequential functions from right to left
(computed by co-deterministic 1NT). Over infinite words, co-determinism is not well-behaved since it
does not imply unambiguity. Indeed, since there is no right end in the input, a co-deterministic ma-
chine can have several final or accepting runs labelled by same input. [CM03] introduces the concept of
prophetic2 automata in order to obtain a better notion of co-determinism. Formally, an automaton with
Büchi final conditions is said to be prophetic if it has at most one final run labelled by any given infinite
input. The main result of [CM03] states that prophetic automata with Büchi final conditions effectively
capture the class of all ω-regular languages. We say that a 1NTω is prophetic if its underlying automaton
is so. The class of functions computed by such machines was studied in [Car10]3.

Definition 8.20 (Prophetic functions of infinite words)

The class of prophetic functions is the class of functions computed by prophetic 1NTω .

Example 8.21 (Normalization in base 2)

The 1NTω presented in Figure 8.17a is prophetic, hence so is the function normalize.

The author believes that the class of prophetic functions is worth being studied, since they act as the
dual of sequential functions. Furthermore, it provides the analogue of Proposition 1.12, as stated in the
next result which originates from [Car10] (see also [FGLM18, Corollary 18]).

2Those machines are called unambiguous in [CM03]. This terminology is no longer used, since the prophetic condition on final
runs is more restrictive than classical unambiguity which only deals with accepting runs.

3The terminology of [Car10] for this class is right-sequential functions whereas we call them prophetic functions instead.

Jump to contents

200 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

Proposition 8.22 (Rational = sequential ◦ prophetic)

A function of infinite words is rational if and only if it can be written as a composition f ◦g where
where f is a sequential function and g is a prophetic function.

8.1.2.4 Decision problems. The landscape of equivalence problems for rational functions of infinite
words is similar to the case of finitewords. Indeed, it is known since [CP81, Corollary 3] that equivalence
of rational functions is decidable, while the sameproblem for relations computed by 1NTω is undecidable
[CP81, Theorem 6]. Furthermore, one can decide if a 1NTω is functional [Gir86, Corollary 3.4].

Now, let us focus on the class membership problem from rational to sequential functions. The two
next results originate from [BC02, Section 3]4 and [BC04, Section 3]. The proof consists in adapting the
twinning properties used for showing Theorem 1.17 to the case of finite words.

The author is convinced that themost interesting statement is Theorem 8.23, which decideswhether
a rational function can be extended to a sequential one. Indeed, once this result is shown, being exactly a
sequential function is just a matter of domains, as illustrated below in the (easy) proof of Corollary 8.24.
Furthermore, computing an extension is trouble-free for practical applications, if we assume that the
environment always provides “correct” inputs, i.e. words which belong to the domain. This is the basic
idea behind the notion of good-enough synthesis introduced in5 [AK20, Section 2].

Theorem 8.23 (Rational→ Sequential extension)

One can decide if a rational function of infinite words has an extension which is sequential. If this
property holds, one can build a 1DTω which computes an extension.

Corollary 8.24 (Rational→ Sequential)

One can decide if a rational function of infinite words is sequential. If this property holds, one can
build a 1DTω which computes it.

Proof. Observe that a rational function f is (effectively) sequential if and only if it can be extended
to a sequential function and its domain is Büchi deterministic. Indeed, a sequential function can be
restricted to any Büchi deterministic language, as claimed in Section 8.1.1.2. We conclude thanks
to Proposition 8.3 and Theorem 8.23. ◀

We conclude this section by conjecturing that another class membership problem for rational func-
tions can be decided. Conjecture 8.25 seems to be less meaningful for practical applications than Corol-
lary 8.24, since prophetic functions are computed by non deterministic devices.

Conjecture 8.25 (Rational→ Prophetic)

One can decide if a rational function is prophetic, by adapting the techniques of [BC04].

4In the particular case where all states of the 1NTω are final, and in this case they build a 1DTω with all states final.
5Curiously, good-enough synthesis is not defined in the same fashion in [FLW20, Section 1]: here they explain that the domain

of the specification must be preserved, which is not explicitly required in [AK20].

Jump to contents

8.2. REGULAR AND DETERMINISTIC REGULAR FUNCTIONS 201

8.2 Regular and deterministic regular functions

In this section, we study the generalization of two-way deterministic transducers to infinite words. The
most striking phenomenon is that, contrary to the case of finite words, two-way deterministic transducers
of infinite words cannot in general simulate 1NTω . Indeed, a 1NTω can e.g. build its output depending on
whether the input contains infinitely many times a given letter, which is not possible for a deterministic
machine. Therefore, the class of regular functions of infinite words was instead defined in [AFT12] as the
class of functions computed by two-way transducers withω-lookarounds (which generalize lookarounds
to infinite words). Thanks to this ω-lookaround feature, 1NTω can be simulated.

8.2.1 Two-way transducers

A two-way transducer of infinite words is roughly defined as a two-way transducer of finite words. The
only syntactical difference is that the symbol ⊣ is no longer needed, since the input has no right border.
This model was first mentioned in [AFT12], even if it is not the core of this paper.

Definition 8.26 (Two-way deterministic transducer of infinite words)

A two-way deterministic transducer of infinite words (2DTω)T = (A,B,Q, q0, F, δ, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with an initial state q0 ∈ Q and a set F ⊆ Q of final states;
▶ a transition function δ : Q× (A ⊎ {⊢})⇀ Q× {◁, ▷};
▶ an output function λ : Q× (A ⊎ {⊢})⇀ B∗ with same domain as δ.

Given a finite or infinite word u ∈ (A ∪ {⊢})∞, the notions of configuration and transition relation
are defined as in the case of finite words (see Definition 1.19). A run of T labelled by u is a finite or
infinite sequence of configurations (q1, i1) −→ (q2, i2) −→ · · · . We say that a run is initial if it starts in
(q0, 1), and final if it is infinite, ij → ∞ and qj ∈ F occurs infinitely often (Büchi conditions6). The
condition ij →∞means that u is infinite and that T visits arbitrary large positions of u. Therefore it
forbids looping behaviors on a prefix of u. The run is accepting if it is both initial and final.

The partial function JT K : Aω ⇀ Bω computed by T is defined as follows. Let u ∈ Aω be the
input, then JT K(u) is defined if and only if there exists a (necessarily unique) accepting run (q1, i1) −→
· · · labelled by ⊢u, whose output λ(q1,⊢u[i1]) · · · is infinite. In this case, we let JT K(u) be this output.

Example 8.27 (Replacing factors)

The function replace from Example 8.15 can be computed by 2DTω . For each i ⩾ 1, this 2DTω

crosses the block 0ni to determine ai, and then crosses it again to output aini+1.

Example 8.28 (Map copy reverse)

Let us extend the function map-copy-reverse to infinite words. Let A be an alphabet, we define
map-copy-reverseω : (A ⊎ {#})ω → (A ⊎ {#})ω as follows:

▶ map-copy-reverseω(u1#u2# · · ·) := u1#ũ1#u2#ũ2# · · · with ui ∈ A∗ for all i ⩾ 0;
▶ map-copy-reverseω(u1# · · ·#un#u) := u1#ũ1# · · ·#un#ũn#u with u ∈ Aω .

This function can be computed 2DTω which makes several passes on each#-free factor (but only

6One could also use Muller conditions, which would only affect the domains of the computed functions. The (seemingly
arbitrary) choice of Büchi conditions is motivated by the fact that they can be removed (Proposition-Definition 9.16).

Jump to contents

202 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

once for the last infinite factor whenever it exists).

The class of functions computed by 2DTω was named in [CD22, Section 3].

Definition 8.29 (Deterministic regular functions of infinite words)

The class of deterministic regular functions is the class of functions computed by 2DTω .

Chapter 9 is devoted to a rather extensive study of deterministic regular functions, by presenting the
contributions of the author published in [CD22, CDFW23]7. In order not to overlap with them, we do
deliberately not state results on deterministic regular functions in the current chapter.

For the moment, let us simply observe that deterministic regular and rational functions are not in-
cluded in each other. This statement was already claimed informally in [AFT12]. Intuitively, the ar-
gument is that deterministic regular functions cannot check ω-regular properties of their input, while
conversely rational functions fail to duplicate arbitrarily large portions of their input.

Proposition 8.30 (Rational and deterministic regular are not comparable)

The classes of deterministic regular functions of infinite words and rational functions of infinite
words are not comparable (even up to extension). In particular:

▶ the function normalize has no deterministic regular extension;
▶ the (total) function map-copy-reverseω is not rational.

Proof sketch. Assume that an extension of normalize is computed by a 2DTω . By leveraging the
techniques of Section 2.2.2, there exist α, β ∈ {0, 1}∗ and M,N ⩾ 1 such that for all input
01M+NXu withX ⩾ 0 and u ∈ {0, 1}ω , the accepting run of T has produced αβX at the time
it visits the first position of u for the first time. Since normalize(01ω) = 10ω , one has β ∈ {0}+,
which contradicts the fact that normalize(01M+NX0ω) = 01M+NX0ω for allX ⩾ 0.

Now let a ∈ A and assume that map-copy-reverseω is computed by a functional 1NTω . By
using similar pumping arguments, there existM0,M1, N ⩾ 1, α, β ∈ A∗ and γ ∈ Aω such that
map-copy-reverseω(aM0aNXaM1#aω) = αβXγω for allX ⩾ 0, yielding a contradiction. ◀

The case of normalize will be re-explained thanks to continuity in Section 8.3.

8.2.2 Two-way transducers with ω-lookaround

In this section, we extend themodel of 2DTω with an extra feature calledω-lookarounds, inspired by the
lookarounds over finite words. Informally, a 2DTω with ω-lookarounds is able to select its transitions
depending on a ω-regular property of its input where the current position is distinguished.

Definition 8.31 (Two-way transducer with ω-lookarounds)

A two-way deterministic transducer (2DTω) with ω-lookarounds consists of a modified two-way
deterministic transducer T = (A,B,Q, q0, F, δ, λ) such that:

▶ the transition function δ has type (Q× RegLang(A)×A× ωRegLang(A))⇀ Q;
▶ the output function λ has type (Q× RegLang(A)×A× ωRegLang(A))⇀ B∗;

7The model of 2DTω was also used by the author in [Dou18] for very specific purposes.

Jump to contents

8.2. REGULAR AND DETERMINISTIC REGULAR FUNCTIONS 203

▶ Dom(δ) = Dom(λ) and this set is finite;
▶ for all (q, L, a,R) ̸= (q, L′, a, R′) ∈ Dom(δ), we have LaR ∩ L′aR′ = ∅.

The semantics of a 2DTω with ω-lookarounds is similar to that of 2DTwith lookarounds. Formally,
given u ∈ Aω and (q, i) a configuration of T over u, then by the last item of Definition 8.31 (which
ensures determinism) there exists at most one tuple (q, L, u[i], R) ∈ Dom(δ) such that u[1:i−1] ∈ L
and u[i+1:] ∈ R. The transition from (q, i) is chosen in accordance with δ(q, L, u[i], R).

As for finite words, observe that having a symbol ⊢ is no longer useful with ω-lookarounds.

Example 8.32 (Copy until)

Let A = {a, b} and consider the function copy-until : Aω ⇀ Aω which maps uabω 7→ uauabω

for u ∈ A∗. It can be computed by a 2DTω with ω-lookarounds which uses the ω-lookaround in
each position labelled by a to check if the suffix starting in this position is bω .

Example 8.33 (Rational functions using an ω-lookaround)

It is easy to see that any ω-bimachine can be simulated by a 2DTω with ω-lookarounds which has
a single state. As a consequence, any rational function can be computed by this model.

Since 2DTω do not compute all rational functions (Proposition 8.30), it follows from Example 8.33
that ω-lookarounds cannot be removed over infinite words. As mentioned above, this major difference
with finitewords follows from the fact that deterministicmachines cannot checkω-regular properties of
infinite suffixes. We shall see in Section 9.1.2 that the lookbehind part (i.e. the component in RegLang(A)
of the transition function) canhowever be removedusing the classical tree constructionof [HU67] (which
was the key for showing Theorem 1.30), at the cost of adding a ⊢ symbol.

Definition 8.34 (Regular functions of infinite words)

The class of regular functions is the class of functions computed by 2DTω with ω-lookarounds.

Note that regular functions subsumes both rational anddeterministic regular functions, because they
are able at the same time check ω-regular properties and duplicate large portions of their input.

Proposition 8.35

The function copy-until has no extension which is rational or deterministic regular.

Proof idea. The arguments are more or less the same as those of Proposition 8.30. To show by
contradiciton that the function is not deterministic regular, we determine someM,N ⩾ 1 and
study the behavior of a 2DTω on inputs which begin with abM+NX forX ⩾ 0. ◀

8.2.2.1 Domains and acceptance conditions. We first claim that one can always transform a 2DTω

withω-lookarounds in an equivalentmachinewhose states are all final. Indeed, the acceptance condition
can be encoded within the ω-lookarounds. The proof would consist in adapting the classical transform-
ation from two-way to one-way automata [She59] to infinite words (see also Proposition-Definition 9.16
for the case of deterministic regular functions) in order to roughly show that two-way automata of in-
finite words with Büchi conditions only compute ω-regular languages.

Jump to contents

204 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

One can similarly show that the domain of a regular function is anω-regular language. Furthermore,
for rational functions, we do not lose generalities if we assume that regular functions are total.

As mentioned in [DFKL20], the model of functional non-deterministic two-way transducer of infinite
words, with eitherMuller or Büchi final conditions, would describe a strict subclass of regular functions.
Informally, the reason is that for computing the function copy-until, one needs a non-deterministic guess
to identify the last occurrence of letter a and after this guess, check that there are only b symbols on the
input. However, two passes on the input are necessary, and the same non-deterministic guesses must be
done at the same positions, which is impossible to ensure for a finite state machine.

8.2.2.2 Basic properties and equivalent models. We first claim in Theorem 8.36 that regular func-
tions are closed under composition. This result is implicit in [AFT12], using the correspondence with
MSO transductions. It can be shown directly by adapting the proof of a Theorem 1.31 over finite words,
and relying on ω-lookarounds (which cannot be removed). The reader is invited to consult Section 9.5
for a similar proof in the setting of deterministic regular functions.

Theorem 8.36 (Composition of regular functions)

The class of regular functions of infinite words is (effectively) closed under composition.

As an easy consequence of this result, one can show that if f is regular and L ⊆ Bω is ω-regular,
then f−1(L) ⊆ Bω is (effectively) an ω-regular language.

Several equivalent descriptions of regular functions of infinite words have been studied. It follows
from [AFT12, Proposition 1] that this class coincides with the functions computed by the (semantic)
extension of monadic second-order transductions to infinite words8. This paper also provides an equi-
valentmodel of streaming string transducers, generalizing the constructions of [AC10]. A formalismwhich
uses combinators, in the spirit of regular expressions, is described in [DGK18].

8.2.2.3 Decision problems. The next result originates from [AFT12, Theorem 3].

Theorem 8.37 (Equivalence of regular functions)

Given two regular functions of infinite words f, g : Aω ⇀ Bω , one can decide if f = g.

To the knowledge of the author, the decision problem from regular functions to rational functions
is open. We conjecture that this result could be tackled by adapting similar techniques over finite words.

Conjecture 8.38 (Regular→ Rational)

One can decide if a regular function of infinite words (or at least a deterministic regular one) is
rational, by adapting e.g. techniques of [FGRS13] to infinite words.

8.3 Computability and continuity

Neither rational nor regular functions aremeaningful for building streaming algorithms. Indeed, they can
e.g. check if the input contains infinitely many times the same symbol, which is irrelevant in practice9.

8This logical correspondence was in fact the initial motivation for introducing regular functions in [AFT12].
9For practical streaming applications, the input would never be really infinite, but only arbitrarily long.

Jump to contents

8.3. COMPUTABILITY AND CONTINUITY 205

To explain what is meant by “algorithm” over infinite words, we describe the model of Turing machine of
infinite words, which has been used for long to study computability over real numbers [Wei00].

Formally, a deterministic Turing machine of infinite words (TMω) computing a function f : Aω ⇀ Bω ,
consists in a classical Turing machine which uses 3 distinct tapes:

▶ a two-way read-only input tape, which contains the input u ∈ Aω ;
▶ a two-way read-write working tape which is used to do internal computations;
▶ a one-way (write-only) output tape, where the output f(u) ∈ Bω (when u ∈ Dom(f)) is produced

in a streaming fashion (since left moves are not allowed, one cannot rewrite the output).
The behavior of such a Turing machine is depicted in Figure 8.39. It can be seen as a 2DTω enhanced
with a read-write working tape. Its semantics is defined in a similar fashion.

Read

Input word⊢

Working word

Read
Write

Output word

Write

Finite set of
control states

Figure 8.39: Behavior of a Turing machine of infinite words.

Definition 8.40 (Computable functions of infinite words)

The class of computable functions is the class of functions computed by TMω .

The goal of this section is to recall known results on computable regular functions. For this purpose,
we also introduce the notion of continuity for functions over infinite words. LetA be an alphabet. Given
u, v ∈ A∞ we denote by u∧v ∈ A∞ the longest common prefix of u and v.

Proposition-Definition 8.41 (Topology over infinite words)

The function d : Aω ×Aω → Q such that d(u, v) := 2−|u∧v| defines a distance onAω .

The continuity of a function f : Aω ⇀ Bω is defined with respect to the topology induced by the
distance d on Aω andBω . In an explicit fashion, this means that the function f is continuous in a given
word u ∈ Dom(f) if for allN ⩾ 0, there existsM ⩾ 0 such that if v ∈ Dom(f)with |u∧v| ⩾M , then
|f(u)∧f(v)| ⩾ N . Furthermore f is continuous when continuous in any word of its domain10.

Example 8.42 (Points of non-continuity)

The function normalize is not continuous in 01ω . Indeed normalize(01ω)∧normalize(01X0ω) = ε
for all X ⩾ 0. The function copy-until is not continuous in any word of its domain. Indeed, let

10This notion of continuity does not coincide with the continuity over finite words studied in [CCP17]. Indeed, the latter defines
topologies through varieties of languages (i.e. they ask whether the function preserves certain languages by inverse images).

Jump to contents

206 CHAPTER 8. BACKGROUNDON TRANSDUCTIONS OF INFINITEWORDS

uabω be such a word with u ∈ {a, b}∗. We have copy-until(uabXabω) = uabXauabXabω for all
X ⩾ 0, thus |copy-until(uabXabω)∧copy-until(uabω)| ⩽ 2|ua|.

It is known since [Pri01, Proposition 4]11 that one candecide if a rational function is continuous. This
result was extended to regular functions in [DFKL20, Theorem 16]. This recent paper also provides im-
proved complexity bounds for the case of rational functions. The basic idea is that the runs of a 2DTω

withω-lookarounds which computes a continuous function have specific patterns, inspired of the twin-
ning properties used in the historical proofs of Theorems 1.17 and 8.23 (see Lemma 10.8 for 1NTω).

Theorem 8.43 (Deciding continuity)

One can decide if a regular function of infinite words f : Aω ⇀ Bω is continuous.

It is easy to observe that if a function f : Aω ⇀ Bω is computable (even up to extension), then it
has to be continuous. Indeed u ∈ Dom(f) andM ⩾ 0, there exists a position N ⩾ 0 such that the
TMω computing f produces f(u)[1:M] while visiting only the positions of u[1:N] in its input. Hence
f(u)[1:M] is a also a prefix of f(v) whenever of |u∧v| ⩾ N . Thus, one can simply re-prove that
neither normalize nor copy-until have a deterministic regular extension (cf. Propositions 8.30 and 8.35).
Conversely, a continuous function has no reason to be computable, as illustrated in Example 8.44.

Example 8.44 (Continuous non-computable function)

Let A := {0, 1}. For all u ∈ Aω , the function 1ω 7→ u with singleton domain is continuous.
However, it is not computable as long as u is not computable.

Nevertheless, continuity and computability coincidewithin the class of regular functions, as claimed
in Theorem 8.45. This result originates from [DFKL20, Theorem 6]12, and it also enables to build aTMω

computing the function. The latter is meaningful in practice for program synthesis: given a specification
(e.g. using an MSO transduction which describes a regular function), one can automatically build an
algorithm which realizes it, whenever it exists, and say that is does not exist otherwise.

Theorem 8.45 (Regular→ Computable extension)

A regular function of infinite words can be extended to a computable function if and only if it is
continuous. If this property holds, one can build a TMω which computes an extension.

Starting from a “simple” 2DTω with ω-lookarounds to obtain a “complex” Turing machine is some-
how disappointing and may be inefficient for implementing the function. Following [DFKL20, Sec-
tion 6], we conjecture that the TMω can always be replaced by a 2DTω in Theorem 8.45.

Conjecture 8.46 (Continuous regular functions are deterministic regular)

A regular function of infinite words can be extended to a deterministic regular function if and only
if it is continuous. If this property holds, one can build a 2DTω which computes an extension.

This conjecture is believed to be rather difficult. The goal ofChapter 10 is to provide a partial answer,
by showing that a rational function of infinite words can be extended to a deterministic regular function
if and only if it is continuous. This theorem is the most original result of Part III.

11This paper contains light mistakes which are fixed in [Pri02].
12Their result is even stronger: they show that continuity and computability coincide within the class of functions which pre-

serve ω-regular languages by inverse images (which is the case of regular functions, as mentioned in Section 8.2.2.2).

Jump to contents

Chapter 9

Deterministic regular functions of
infinite words

UN COQ, au Paon
Maître, lequel de nous mettrez-vous à la mode ?

UN PADOUE, s’avançant en hâte
Moi ! – J’ai l’air d’un palmier !

UN CHINOIS, repoussant le Padoue
Et moi, d’une pagode !

Edmond Rostand, Chantecler

In Chapter 8, we have defined the class of deterministic regular functions. The goal of the current
chapter is to study its properties in detail and demonstrate that it is a robust and natural class of func-
tions computable by simple devices. To that extent, deterministic regular functions turn out to be more
relevant than the regular ones, at least when dealing with practical computable applications.

We shall describe several formalismswhich capture deterministic regular functions. The equivalence
proofs between these models are somehow entangled, as depicted in Figure 9.1. Solid arrows denote the
proofs presented in Chapter 9. Those which require a large amount of additional work with respect to
the case of finite words are highlighted in bold. Dashed arrows denote syntactic restrictions.

Over infinite words, 2DTω with ω-lookarounds are able to check infinite properties of their input,
and therefore have non-computable behaviors. We describe in Section 9.1 a weaker feature called finite
lookarounds, which enables to check a property of a finite prefix of the input. Thus it accounts for prop-
erties which are not local, but still finite. We show that finite lookarounds can effectively be removed
for 2DTω . The author is not aware of a direct proof of this result (similar to the proof over finite words),
and our proof instead uses streaming string transducers of infinite words as an intermediate model. The
ability to remove finite lookarounds will be used for showing the main result of Chapter 10.

In Section 9.2, we describe a generalization of streaming string transducers to infinite words. This
model has a distinguished output register which is updated in an append-only fashion. We show that
deterministic regular functions are exactly the functions computed by streaming string transducers of
infinite words which are copyless, or equivalentlyK-bounded for someK ⩾ 0.

We then show in Section 9.5 that deterministic regular functions are closed under composition, by
adapting the classical proof over finite words, and crucially relying on finite lookarounds. In Section 9.6

208 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Two-way transducers

Two-way transducers
with lookbehinds

Compositions of
basic functions

Two-way transducers
with finite lookarounds

Two-way transducers
with finite lookaheads

K-bounded streaming
string transducers

Copyless streaming
string transducers

Section 9.6 Section 9.5

Section 9.1.2

Section 9.4

Section 9.3 Section 9.2.4

Section 9.2.3 Section 9.1.2

Figure 9.1: Equivalent models presented in Chapter 9 for deterministic regular functions.

we claim that, conversely, deterministic regular functions can be decomposed, i.e. written as composi-
tions of simpler basic functions (which include the sequential ones).

Finally, we discuss in Section 9.7 the generalizations of pebble transducers or marble transducers
to infinite words. In this context, we conjecture that obtaining optimization results (even for streaming
string transducers, recall Chapter 4) is far more complex than over finite words.

The contributions presented in this chapter are based on part of the results of [CDFW23] and on
the theorems of [CD22] which deal with streaming string transducers of infinite words. [CDFW23] also
provides a model of guarded logical transductions which is equivalent to deterministic regular functions,
but we chose not to present it here since we have never dealt with logic in this manuscript1.

9.1 Two-way transducers with finite lookarounds

The class of deterministic regular functions is built by prohibiting the use ofω-lookarounds for two-way
transducers of infinite words (contrary to regular functions). The goal of Section 9.1 is to introduce a
weaker feature called finite lookarounds, which enable to test non-local but still finite properties of the
input. We show that finite lookarounds can effectively be removed, which provides a satisfying analogue
of the situation over finite words (even if the proof techniques are more involved).

9.1.1 Finite lookarounds

Intuitively, a 2DTω with finite lookarounds is able to check a regular property of a finite prefix of its
input, in which the current position is distinguished. For instance, this machine can choose its transition
depending on whether letter 1 or 2will occur in the future (see Example 9.3). However, it cannot check
that neither a 1 nor a 2 occurs, since this property does not depends on a finite prefix of the input.

Definition 9.2 (Two-way transducer with finite lookarounds)

A two-way deterministic transducer (2DTω) with finite lookarounds consists of amodified two-way
deterministic transducer T = (A,B,Q, q0, F, δ, λ) such that:

▶ the transition function δ has type (Q× RegLang(A)×A× RegLang(A))⇀ Q;

1Furthermore, the proof of this logic-transducer equivalence is really similar to the historic proof of [EH01] over finite words,
once the question of removing finite lookarounds over infinite words is settled.

Jump to contents

9.1. TWO-WAY TRANSDUCERSWITH FINITE LOOKAROUNDS 209

▶ the output function λ has type (Q× RegLang(A)×A× RegLang(A))⇀ B∗;
▶ Dom(δ) = Dom(λ) and this set is finite;
▶ for all (q, L, a,R) ̸= (q, L′, a, R′) ∈ Dom(δ), we have LaR ∩ L′aR′ = ∅.

The semantics of a 2DTω with finite lookarounds is built upon that of 2DTω with ω-lookarounds,
with the essential difference that the transitions only depend on a finite prefix of the input. Formally,
given a configuration (q, i), we say that (q, L, a,R) ∈ Dom(δ) is admissible if u[1:i−1] ∈ L and there
exists some i ⩽ j such that u[i+1:j] ∈ R. In this case, we say that u[i+1:j] is a witness of admissibility.
In order to ensure determinism, the transition which is triggered is the (unique thanks to the last item
of Definition 9.2) one which has the shortest witness of admissibility.

Note that 2DTω with finite lookarounds canbe seen as a particular case of 2DTω withω-lookarounds.

Example 9.3 (Replace)

The function replace from Example 8.15 can be computed by a 2DTω with finite lookarounds.
The latter uses its finite lookarounds to determine whether the current factor 0ni will end with
letter 1 or letter 2 and chooses its output accordingly. However, if the suffix starting in the current
position is 0ω (i.e. there is no 1 nor 2 in the future), no transition can be enabled.

Now, we claim that finite lookarounds can be removed. As mentioned before Theorem 1.30, over
finite words this task can be handled using the tree construction from [HU67, Lemma 3]. However, this
construction crucially relies on the fact that the input is finite, thus when moving right we are ensured
to meet a ⊣ symbol at some point. The proof of Theorem 9.4 is substantially different: it uses a detour
through streaming string transducers of infinite words and goes over Sections 9.1 to 9.4.

Theorem 9.4 (Finite lookarounds removal)

Given a 2DTω with finite lookarounds, one can build an equivalent 2DTω .

Proof. We first transform the 2DTω with finite lookarounds in a 2DTω with finite lookaheads
by Theorem 9.9. Then we use Theorem 9.30 to build an equivalent 1-bounded streaming string
transducer of infinitewords. The latter is transformed in an equivalent 2DTω byTheorem9.13. ◀

As a side notion, one can define a 1DTω with finite lookarounds as a 2DTω with finite lookarounds
which only uses right moves. Observe that the 2DTω with finite lookarounds described in Example 9.3
is in fact a 1DTω with finite lookarounds. In this setting, finite lookarounds cannot be removed.

Claim 9.5 (Non-lookaround removal for 1DTω)

The function replace can be computed by a 1DTω with finite lookarounds, but it is not sequential.

9.1.2 Lookbehinds and finite lookaheads

The finite lookarounds of a 2DTω can roughly be decomposed in two parts. First, they consist of look-
behinds which check properties of the prefix ending in the current position (this case is very similar to
finite words). Second, they use finite lookaheads which check properties of a finite prefix of the suffix
starting in the current position. This motivates the definition of two variants of finite lookaheads.

Jump to contents

210 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Definition 9.6 (Two-way transducer with lookbehinds)

A two-way deterministic transducer (2DTω) with lookbehinds consists of a modified two-way de-
terministic transducer T = (A,B,Q, q0, F, δ, λ) such that:

▶ the transition function δ has type (Q× RegLang(A)×A)⇀ Q;
▶ the output function λ has type (Q× RegLang(A)×A)⇀ B∗;
▶ Dom(δ) = Dom(λ) and this set is finite;
▶ for all (q, L, a) ̸= (q, L′, a) ∈ Dom(δ), we have L ∩ L′ = ∅.

Intuitively, this machine only checks a property of the prefix. The semantics of a 2DTω with look-
behinds is defined as that of a 2DTω with finite lookarounds whose right component in RegLang(A) is
alwaysA∗, which means that it only checks a trivial property of the infinite suffix.

Theorem 9.7 (Lookbehind removal)

Given a 2DTω with lookbehinds, one can build 2DTω which computes the same function. Further-
more, if a 2DTω with lookbehinds with all states final (which means F = Q in Definition 8.26) is
given as input, the construction builds a 2DTω with all states final.

Proof idea. The aforementioned construction from [HU67, Lemma 3] for removing lookarounds
over finite words can directly be adapted in this setting. Indeed, since the machine only checks a
property of the prefix, it can act “as if” the input was finite and use the marker ⊢. ◀

The difficulty for removing finite lookarounds unsurprisingly lies in the ability to check properties
of the suffix starting in the current position. This ability is summarized in the notion of finite lookaheads.

Definition 9.8 (Two-way transducer with finite lookaheads)

A two-way deterministic transducer (2DTω) with finite lookaheads consists of a modified two-way
deterministic transducer T = (A,B,Q, q0, F, δ, λ) such that:

▶ the transition function δ has type (Q×A ⊎ {⊢} × RegLang(A))⇀ Q;
▶ the output function λ has type (Q×A ⊎ {⊢} × RegLang(A))⇀ B∗;
▶ Dom(δ) = Dom(λ) and this set is finite;
▶ for all (q, a,R) ̸= (q, a,R′) ∈ Dom(δ), we haveR ∩R′ = ∅.

This machine can be seen as the dual of a 2DTω with lookbehinds: it can only check properties of
the suffix which starts in the current position (hence⊢ is now necessary to detect the border when doing
left moves). Its semantics is defined as that of a 2DTω with finite lookarounds whose left component in
RegLang(A) is alwaysA∗, which means that it only checks a trivial property on the prefix.

Now, we claim that to remove finite lookarounds, it is in fact sufficient to remove finite lookaheads.

Theorem 9.9 (From finite lookarounds to finite lookaheads)

Given a 2DTω with finite lookarounds, one can build a 2DTω with finite lookaheads which com-
putes the same function. Furthermore, if a 2DTω with finite lookarounds with all states final is
given, the construction builds a 2DTω with finite lookaheads with all states final.

Proof idea. Adapt the proof of Theorem 9.7. ◀

Jump to contents

9.2. STREAMING STRING TRANSDUCERS OF INFINITEWORDS 211

9.2 Streaming string transducers of infinite words

Generalizations of streaming string transducers to infinitewordswere first introduced in [AFT12,Defin-
ition 3] for regular functions. In this section, we present themodel of streaming string transducers of infinite
words introduced in [CD22, Definition 3.4] to capture deterministic regular functions.

This model is interesting in itself since it provides a “streaming” implementation of deterministic
regular functions. Furthermore, it will be used in Section 9.4 as a key tool to remove finite lookaheads
for 2DTω , and in Chapter 10 to deal with continuous rational functions.

9.2.1 Streaming string transducers of infinite words

Intuitively, a streaming string transducer of infinite words consists of a usual streaming string transducer
which uses a distinguished register out to collect the output produced when reading an infinite word.
We shall ensure syntactically that this output converges to either a finite or infinite word.

Definition 9.10 (Streaming string transducer of infinite words)

A deterministic streaming string transducer of infinite words (DSSTω) S = (A,B,Q, q0, F, δ,R,
out, ι, λ) consists of:

▶ an input alphabetA and an output alphabetB;
▶ a finite set of statesQ with q0 ∈ Q initial and F ⊆ Q final;
▶ a transition function δ : Q×A ⇀ Q;
▶ a finite set of registersR with a distinguished output register out ∈ R;
▶ an initial function ι : R→ B∗;
▶ an update function λ : Q×A ⇀ SBR such that for all (q, a) ∈ Dom(λ) = Dom(δ):

▶ λ(q, a)(out) = out · · · ;
▶ there is no other occurrence of out among the λ(q, a)(r) for r ∈ R.

The extended transition function δ∗ and extended output function λ∗ are defined as for finite words
after Definition 4.14. For all r ∈ R and u ∈ A∗, we define the substitution JJ·KKu : R → B∗ which
provides “the values of the registers after reading u” in the same fashion. By construction, if u ∈ Aω

then JJoutKKu[1:i] is a prefix of JJoutKKu[1:i+1] for all i ⩾ 0. The function JS K : Aω ⇀ Bω is defined
as follows. Given u ∈ Aω , JS K(u) is defined if and only if δ∗(q0, u[1:i]) belongs to F infinitely often
(Büchi conditions) and |JJoutKKu[1:i]| → ∞. In this case, we let JS K(u) :=

∨
iJJoutKKu[1:i] (where the

symbol ∨ is used to denote the unique α ∈ Bω such that JJoutKKu[1:i] is a prefix of α for all i ⩾ 0).

Example 9.11 (Replacing factors)

The function replace can be computed by aDSSTω which crosses each block 0ni while computing
1ni and 2ni in two registers. When it sees ai ∈ {1, 2}, it sends the appropriate register in out.

Example 9.12 (Map copy reverse)

The functionmap-copy-reverseω can be computed by aDSSTω . When reading a factor ui, it writes
ui in out and ‹ui in another register. This register is sent into out when reading#.

The notions of copyless andK-bounded DSSTω are directly adapted to the context of infinite words
from Definitions 4.26 and 4.33. Now, we give an analogue of Corollary 4.35 by showing that such ma-
chines capture deterministic regular functions. The next result originates from [CD22, Theorem 3.7].

Jump to contents

212 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Theorem 9.13 (Two-way transducers = copyless/bounded DSSTω)

Given f : Aω ⇀ Bω , the following conditions are equivalent:

(1) f is computed by a 2DTω (i.e. f is deterministic regular);
(2) f is computed by aK-bounded DSSTω for someK ⩾ 0;
(3) f is computed by a copyless DSSTω .

The conversions are effective. If either a copyless DSSTω , or a K-bounded DSSTω , or a 2DTω

with all states final is given, the construction builds another machine with all states final.

Proof. Item (3)⇒ Item (1) is shown in Section 9.2.3. Item (1)⇒ Item (2) is shown in Section 9.2.4.
Both conversions are obtained by easily adapting the techniques used over finite words. In Sec-
tion 9.3, we show Item (2)⇒ Item (3). This case is more complex than the similar proof over finite
words. Finally, all conversions are effective and preserve the property of accepting states. ◀

9.2.2 Domains and final conditions

The goal of this section is to provide low-hanging consequences of Theorem 9.13. We first observe that
the domains of deterministic regular functions are Büchi deterministic languages. We also show that
such languages are preserved by deterministic regular functions under inverse images. As particular
case of regular functions, deterministic regular functions also preserve ω-regular languages by inverse
images (but none of these two results imply the other).

Proposition 9.14 (Relations with deterministic Büchi languages)

Let f : Aω ⇀ Bω be a deterministic regular functions, then:

(1) Dom(f) is (effectively) Büchi deterministic;
(2) if L ⊆ Bω is Büchi deterministic, then f−1(L) ⊆ Aω is (effectively) Büchi deterministic;
(3) if L ⊆ Dom(f) is Büchi deterministic, then f |L is (effectively) deterministic regular.

Proof ideas. For Item (1), we start from a (copyless) DSSTω which computes f , and we build a
deterministic Büchi automaton which computes Dom(f). The idea is to keep track of whether the
registers are empty or not (it is a bounded information which can be stored in the states), and reach
a final state when the DSSTω visits a final state and later adds a non-empty register in out.

For Item (2), we start from a 2DTω which computes f . We perform a (wreath) product con-
struction with a deterministic finite automaton with Büchi conditions which recognizesL to build
a 2DTω which computes f restricted to the language f−1(L) = {u ∈ Dom(f) | f(u) ∈ L}. By
Item (1) the domain of this deterministic regular function is Büchi deterministic.

For Item (3), we start from a copyless DSSTω which computes f . We perform a product con-
struction of its underlying one-way automaton (with Büchi conditions) with a one-way automaton
(with Büchi conditions) which recognizes L, to build a copyless DSSTω which computes f |L. ◀

More interestingly, we show that for DSSTω , the Büchi final conditions can be encoded within the
fact that the output is infinite. This result relies on the ability ofDSSTω to “wait” an unbounded time be-
fore producing an output. Recall that it does not hold for 1DTωand sequential functions (see Claim 8.9).

Lemma 9.15 (Removing final states in DSSTω)

Given a copyless (resp. K-bounded) DSSTω , one can build a copyless (resp. K-bounded) DSSTω

which computes the same function and with all states final.

Jump to contents

9.2. STREAMING STRING TRANSDUCERS OF INFINITEWORDS 213

Proof idea. LetS be the original DSSTω . We build a new DSSTω S ′ with all states final, which
consists of S with all states final together with a new register out′. Whenever S would update
out, then S ′ adds this value in out′ instead. Furthermore, each time S reaches a final state, then
S ′ empties out′ and adds its value in out. It is clear that the output of S ′ is infinite if and only if
S infinitely often visits an accepting state and produces an infinite output. ◀

As a consequence, final states are also useless in 2DTω . In Sections 9.5 and 9.6, we shall freely assume
that our 2DTω are normalized (this will avoid technicalities when dealing with final states). We define the
notion of n-run as we did over finite words in Section 1.2.2.1.

Proposition-Definition 9.16 (Normalization of two-way transducers)

We say that a 2DTω T = (A,B,Q, q0, F, δ, λ) is normalized the following holds:

▶ F = Q (all states are final);
▶ for all q ∈ Q and a ∈ A, λ(q, a) ∈ B ∪ {ε} (at most one letter);
▶ for all q ∈ Q, λ(q,⊢) = ε (no output on the border).

Given a 2DTω , one can build an equivalent normalized 2DTω .

Proof. We first convert the 2DTω into a DSSTω by Theorem 9.13. Then we build an equivalent
DSSTω with all states final by Lemma 9.15, and we further convert it into a 2DTω with all states
final by Theorem 9.13. Finally, we shift all productions on ⊢ to the first letter of the input. ◀

9.2.3 From copyless streaming string transducers to two-way transducers

The goal of this section is to show Item (3)⇒ Item (1) in Theorem 9.13. Given a copyless DSSTω , we
describe how to build an equivalent 2DTω . Furthermore, if all states are final in the DSSTω , it will also
be the case in the 2DTω . The proof goes over the proof of Section 4.3.3.1 in the case of finite words.

Consider a DSSTω S = (A,B,Q, q0, F, δ,R, out, ι, λ). Without losing generalities, we assume
that the updates of the register out in S always have shape out 7→ out out′ for a specific register out′

(this can be done by using out′ as a buffer to store the values which should be added in out in position i,
and then adding them into out in position i+1 by doing out 7→ out out′).

Thanks to Lemma 4.36, one can build a 2DT with lookarounds T with designated states pr and rr
for r ∈ R, such that the following holds. For all u ∈ A∗, 1 ⩽ i ⩽ |u| and r ∈ R, the longest run
of T labelled by ⊢u⊣ which starts in configuration (pr, |⊢u[1:i]|) and only moves on ⊢u[1:i] has the
following property: it outputs JJrKKu[1:i] and it ends in configuration (rr, |⊢u[1:i]|+1). Recall that the
construction of Lemma 4.36 follows Algorithm 4.22 and only uses the lookarounds to determine the
current state of S , i.e. q := δ∗(q0, u). Thus no finite lookaheads (= no informations about the future)
are needed, andT can in fact be seen as a 2DTω with lookbehinds. In this setting, for all u ∈ Aω , i ⩾ 1
and r ∈ R, the longest run ofT labelled by ⊢uwhich starts in configuration (pr, |⊢u[1:i]|) and moves
on⊢u[1:i] has the following property: it outputs JJrKKu[1:i] and it ends in configuration (rr, |⊢u[1:i+1]|).

We are ready to describe a 2DTω with lookbehinds which simulates S . It behaves as follows on
input u ∈ Aω : for all i ⩾ 1, it simulates the 2DTω with lookbehinds T when starting in configuration
(rout′ , |⊢u[1:i]|) until it reaches (pout′ , |⊢u[1:i+1]| (in the construction of Lemma 4.36, pout′ cannot
be reached before coming back to position i, since out′ is only used to update out). It is clear that this
2DTω produces an infinite output (resp. a finite output, resp. gets blocked) if S produces an infinite
output (resp. a finite output, resp. gets blocked). If all the states of S were final, our construction is
correct when setting all states final. If S has non-final states, we make our machine visit a final state
only when it starts to simulate T in a position i ⩾ 0 such that δ∗(q0, u[1:i]) ∈ F . Finally, we remove
the lookbehinds of the 2DTω thanks to Theorem 9.7.

Jump to contents

214 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

9.2.4 From two-way transducers to bounded streaming string transducers

The goal of this section is to show Item (1)⇒ Item (2) in Theorem 9.13. Given a 2DTω , we show how to
build an equivalent 1-boundedDSSTω . Furthermore, if all states are final in the 2DTω , it will also be the
case in the DSSTω . The proof is a variant of Section 4.2.4 which studies recursive marble transducers.
Even if a similar construction is well-known over finite words, we describe it in detail since it plays the
role of a warm-up for the proof of Section 9.4 which deals with finite lookaheads.

Let T = (A,B,Q, q0, F, δ, λ) be a 2DTω which computes a function f : Aω ⇀ Bω . One can
define the extended transition function δ∗ and the extended output function λ∗ as we did for 2DT, together
with the function maxi-run which builds the longest run staying in a word (see Section 2.1.1). The no-
tions of transition morphism and transition monoid are defined exactly as in Proposition-Definition 2.2.
Furthermore, we extend δ∗ and maxi-run to infinite words by defining δ∗(−→q , u) := ←−p for u ∈ Aω if
the longest (finite) run leaves u “on the left” and δ∗(−→q , u) := ω if this run is infinite and visits arbit-
rary large positions (otherwise δ∗(−→q , u) and maxi-run(−→q , u) are undefined). Note that δ∗(←−q , u) for
u ∈ Aω would not make sense (there is no right border). The function λ∗ is extended accordingly.

Now, let us describe a 1-bounded DSSTω S which computes the function f .

9.2.4.1 Information stored by S . After reading u ∈ A∗, S will store:

(1) informations about the right-to-right runs of T labelled by ⊢u:
(a) for all p ∈ Q such that δ∗(←−p ,⊢u) has shape←−q , the state q, stored in the states of S ;
(b) for all p ∈ Q such that δ∗(←−p ,⊢u) has shape←−q , λ∗(←−p ,⊢u) stored in a register rightp;

(2) informations about the beginning of the initial run labelled by ⊢u:
(a) if δ∗(−→q0 ,⊢u) has shape−→q , the state q, stored within the states of S ;
(b) if δ∗(−→q0 ,⊢u) has shape−→q , λ∗(−→q0 ,⊢u) stored in the register out.

9.2.4.2 Updating the right-to-right and initial runs. Assume that S has computed the elements
of Items (1) and (2) for some u ∈ A∗. Let a ∈ A and p0 ∈ Q, we show how maxi-run(←−p0,⊢ua)
can be described by recombining the informations about ⊢u. Claim 9.17 is roughly a reformulation of
Claim 4.23 in the absence of recursive calls. The reader is invited to consult back Figure 4.24 if needed.

Claim 9.17 (Updating right-to-right runs)

δ∗(←−p0,⊢ua) = −→q if and only there exist 0 ⩽ n < |Q| and q1, p1, . . . , qn, pn ∈ Q such that:

▶ δ(pn, a) = (▷, q) and for all 0 ⩽ i < n, δ(pi, a) = (◁, qi+1);
▶ for all 1 ⩽ i ⩽ n, δ∗(←−qi , u) = −→pi .

In this case, we have:

λ∗(←−p0,⊢ua) = λ(p0, a) λ
∗(←−q1 ,⊢u) λ(p1, a) · · · λ∗(←−qn,⊢u) λ(pn, a).

Thanks to Claim 9.17,S can compute the states q1, p1, . . . , qn, pn, q ∈ Qwhenever they exist. For
the registers, we update rightq 7→ λ(p0, a) rightq1 λ(p1, a) · · · rightqn λ(pn, a).

The updates of Item (2) are done by a similar construction for maxi-run(−→q0 ,⊢u).

9.2.4.3 Correctness of the construction. We first observe that the register out is only used to update
itself. Indeed, there is no need to use the output produced along the initial run when building right-to-
right runs. Since it contains exactly the output produced along an initial run, we have JJoutKKv[1:i] → f(v)

Jump to contents

9.3. FROM BOUNDED TO COPYLESS STREAMING STRING TRANSDUCERS 215

whenever v ∈ Dom(f). If F = Q in T , it is easy to see that when v ̸∈ Dom(f), either S gets blocked,
or it produces a finite output. Hence we can set all its states as final.

IfF ̸= Q, one needs to strengthen the information stored byS . For all p ∈ Q such that δ∗(←−p ,⊢u)
has shape −→p , we make S keep track of whether maxi-run(←−p ,⊢u) meets a final state or not. This in-
formation is then used to determine when the initial run maxi-run(−→q0 ,⊢u)meets accepting states when
doing right-to-right runs, and the accepting states of S are built accordingly.

9.2.4.4 1-boundedness of the streaming string transducer. We finally justify thatS is 1-bounded.
Intuitively, sending two copies of a given register into another one would mean that the same piece of
run is used twice to build another run (which is not possible).

Claim 9.18 (Copies are loops)

Let u ∈ A∗ and 0 ⩽ i ⩽ |u|. Let s be the substitution applied by S when reading u[i+1:|u|],
after having read u[1:i]. For all p ∈ Q, if rightp occurs k ⩾ 1 times in s(rightq), then δ∗(

←−q , u)
has shape−→r and maxi-run(←−q , u) visits k times the configuration (|⊢u[1:i]|, p).

Proof idea. By induction on |u|. ◀

Claim 9.18 immediately gives a contradiction if k ⩾ 2, since maxi-run(←−q , u) cannot visit twice the
same configuration without looping. Similar results can be shown when dealing with out. Overall,S is
1-bounded (assuming that it is trim, i.e. that any of its states is accessible).

9.3 From bounded to copyless streaming string transducers

The goal of this section is to show Item (2)⇒ Item (3) in Theorem 9.13. Given aK-bounded DSSTω ,
we describe how to build an equivalent copyless DSSTω . Furthermore, if all states are final in the first
DSSTω , it will also be the case in the second one. The construction is adapted from those over finite
words [DJR18, DFG20]2. However, it is not possible to directly re-use them since they add e.g. non-
determinism or lookarounds to DSST, and we are precisely trying to avoid such features here.

The first idea for transforming aK-bounded DSSTω into a copyless one is to maintainK copies of
each register. However, this information cannot be updated during a computation: if r is used to update
both r1 and r2, one cannot buildK copies of r1 andK copies of r2 in a copyless fashion. A solution is
to maintain exacly the number of copies of r that will be used in the output at some point in the future.
However, this value cannot be determined before reading the whole infinite input. Therefore, we shall
keep track of a tree which contains all the consistent non-deterministic guesses of these values. The
second difficulty of the proof is to ensure in this setting that the output is infinite.

In Section 9.3.1, we first study someproperties of the copies in aK-boundedDSSTω . In Section 9.3.3
we describe how to transform a K-bounded DSSTω into a copyless one by doing a tree construction,
under the assumption that it canmanipulateK-bounded substitutions. In Section 9.3.2, we explain how
these manipulations can be done in a copyless fashion. From now on, let us fix a K-bounded DSSTω

S = (A,B,Q, q0, F, δ,R, out, ι, λ). We let T := R∖ {out}. Given u ∈ Aω and i ⩾ 1, we denote by
λui the substitution applied when reading u[i], i.e. λui := λ(δ∗(q0, u[1:i−1], u[i])).

2It is however not exactly the same construction as in [AFT12].

Jump to contents

216 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

9.3.1 Properties of copies

This section studies properties of register copies inS . We first define formally in Definition 9.19 what
is meant by “the number of copies of r that will be used in the output at some point in the future”.

Definition 9.19 (Copies)

Let u ∈ Aω and i ⩾ 0 be such that λui+1 is defined. Given r ∈ T, we let:

copiesui (r) := max{|λui+1 ◦ · · · ◦ λuj (out)|r | j ⩾ i and λuj is defined}.

Observe that copiesui (r) ⩽ K since S isK-bounded. Now, we describe an inductive relation that
copiesui (r) verifies. Intuitively, Lemma 9.20 means that if copiesui (r) copies of r will be needed, then in
the next transition these copies can be distributed in a consistent way among the registers.

Lemma 9.20 (Distributing copies)

Let u ∈ Aω and i ⩾ 0 be such that λui+1 is defined. Then for all r ∈ T:

copiesui (r) = |λui+1(out)|r +
∑
s∈T

|λui+1(s)|r × copiesui+1(s).

The rest of Section 9.3.1 is devoted to showing Lemma 9.20. We first provide a way to count the
copies obtained when composing two substitutions with Claim 9.21.

Claim 9.21 (Counting copies in compositions)

Let s, s′ ∈ SBR , then for all r, s ∈ R, |s ◦ s′(r)|s =
∑

t∈R |s(t)|s × |s′(r)|t.

From now on, we fix u ∈ Aω . We note that since out is always updated with out α, the number of
copies of a given register which are used out can only grow when reading the input.

Claim 9.22 (More copies in the outputs)

Given r ∈ T and i ⩾ 0 such that λui+1 is defined, the function which maps j ⩾ i such that λuj is
defined to |λui+1 ◦ · · · ◦ λuj (out)|r is non-decreasing.

Proof. By Claim 9.21, |λui+1 ◦ · · · ◦ λuj+1(out)|r ⩾ |λui+1 ◦ · · · ◦ λuj (out)|r × |λuj+1(out)|out. ◀

By Claim 9.21, we have for all j ⩾ i+1 such that λuj is defined and for all r ∈ T:

|λui+1 ◦ · · · ◦ λuj (out)|r = |λui+1(out)|r × 1 +
∑
s∈T

|λui+1(s)|r × |λui+2 ◦ · · · ◦ λuj (out)|s.

Now let j0 ⩾ i+1 be such that |λui+1 ◦ · · · ◦ λuj0(out)|r is maximal (this value exists since copiesui is
finite). Since j 7→ |λui+1 ◦ · · · ◦ λuj (out)|r is non-decreasing, we get for all j ⩾ j0 (with λui defined):

copiesui (r) = |λui+1 ◦ · · · ◦ λuj (out)|r = |λui+1(out)|r +
∑
s∈T

|λui+1(s)|r × |λui+2 ◦ · · · ◦ λuj (out)|s.

Since the function j 7→ |λui+2 ◦ · · · ◦λuj (out)|s is constant to copiesui+1 for j large enough, we conclude.

Jump to contents

9.3. FROM BOUNDED TO COPYLESS STREAMING STRING TRANSDUCERS 217

9.3.2 Toolbox: manipulating bounded substitutions

In Section 9.3.3, we shall describe a copyless DSSTω which simulates theK-bounded DSSTω S . This
machine will manipulate some substitutions applied byS along portions of its input. In this section, we
explain as a first step how a copyless DSSTω can manipulateK-bounded substitutions.

9.3.2.1 Hoarding bounded substitutions. We describe how a copylessDSSTω can storeK-bounded
substitutions (the ideas aremainly based on those of [DFG20, Section E.2]). Let s ∈ SBT be aK-bounded
substitution, then for all r ∈ T there exists n ⩽ K|T| such that s(r) = α0r1α1 · · · rnαn with αi ∈ B∗

and ri ∈ T. We mainly have two informations in this expression:
(1) the sequence r1, · · · , rn with n ⩽ K|T| which describes where the registers are used;
(2) the sequence α0, . . . , αn of (possibly unbounded) words fromB∗.

Definition 9.23 (Hoarding bounded substitutions)

Let k ⩾ 0. We say that a DSSTω S ′ hoards k copies of s(r) if it stores:

(1) the bounded sequence r1, · · · , rn in its bounded memory;
(2) for all 0 ⩽ j ⩽ n, k copies of the word αj ∈ B∗ in k distinct registers.

In the rest of Section 9.3, we use the term hoard with the formal meaning of Definition 9.23.

9.3.2.2 Composing bounded substitutions. Thanks to the representation of substitutions described
in Section 9.3.2.1, we show how to simulate the composition of two K-bounded substitutions, whose
composition is itselfK-bounded, without making copies.

Claim 9.24 (Copyless composition ofK-bounded substitutions)

Let s, s′ ∈ SBT be K-bounded and such that s ◦ s′ is so. Let g, g′ : T → [0:K] be such that
g(r) =

∑
s∈T |s′(s)|r × g′(s) for all r ∈ T. Assume that some DSSTω S ′ hoards:

▶ g(r) copies of s(r) for all r ∈ T;
▶ g′(s) copies of s′(s) for all s ∈ T.

Then one can describe a copyless update of S ′ so that the following holds after this update:
S ′ hoards g′(s) copies of s ◦ s′(s) for s ∈ T.

Proof. In order to hoard g′(s) copies of s ◦ s′(s), we exactly need to use |s′(s)|r × g′(s) copies
of each hoarded element s(r). The result follows by summing over all s ∈ T. ◀

Thanks to Claim 9.24, the machine that we build will be able to compose the substitutions that it
hoards, assuming that it has a correct number of copies.

9.3.3 Construction of the copyless streaming string transducer

Now our goal is to build a copyless DSSTω S ′ which, when given u ∈ Aω as input, hoards copiesui (r)
copies of JJrKKu[1:i] after reading u[1:i]. However, one needs informations about u[i+1:] in order to de-
termine copiesui (r) (this is typically where we would need an ω-lookaround). Thus our copyless DSSTω

cannot exactly compute copiesui (r). It will instead memorize a finite forest of substitutions.
Formally, we introduce the notion of decomposition of a substitution s. We recall that the depth of a

node in a tree is defined inductively by starting from root which has depth 1.

Jump to contents

218 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Definition 9.26 (Decomposition)

Given aK-bounded substitution s ∈ SBT , a decomposition of s of depth n ⩾ 1 consists of:

▶ a sequence s1, . . . , sn ofK-bounded substitutions such that s = s1 ◦ · · · ◦ sn;
▶ a finite set of trees of depth n, whose nodes are labelled by functions T→ [0:K] such that:

▶ all leaves of all trees have depth n and distinct labels;
▶ for all 1 ⩽ j ⩽ n−1, there exist a tree and a node of depth j in this tree which has at

least two children (i.e. there is no linear branching simultaneously in all trees);
▶ for all 2 ⩽ j ⩽ n, if h is the label of a node of depth j in a tree and g labels its parent,

then for all r ∈ T:
g(r) =

∑
s∈T

|sj(s)|r × h(s). (9.26)

Observe that the number of decompositions is finite when forgetting the s1, . . . , sn part (which
contains an unbounded information). Indeed, the total number of leaves is bounded (since all leaves
have to be distinct). Furthermore, the depth n of the trees has to be bounded, since otherwise by the
pigeonhole principle one could find 1 ⩽ j ⩽ n−1 such that all nodes of depth j have a single child.

9.3.3.1 Information stored by the copyless DSSTω . Let u ∈ Aω and i ⩾ 0 be such that λiu is
defined. We want S ′ to preserve the following invariants after reading u[1:i]:

(1) it has produced JJoutKKu[1:i] in its output register;
(2) it keeps track of a decomposition of theK-bounded substitution ι ◦ λu1 ◦ · · ·λui |T such that one

of the trees has a leaf whose label is copiesui . More precisely if s1, . . . , sn are the substitutions:
(a) S ′ stores the (bounded) trees in its states;
(b) for all node of a tree of depth 1 ⩽ j ⩽ n whose label is g : T → [0:K], S ′ hoards g(r)

copies of sj(r) for all r ∈ T.

The rest of Section 9.3.3 is devoted to explaining, how S ′ performs its initialization and updates.
We rely on the ability to compose the hoarded substitutions, as explained in Claim 9.24.

9.3.3.2 Initialization of the decomposition. For i = 0,S ′ stores a decomposition of height 1which
consists of the substitution s1 := ι|T and a set of (K +1)|T| trees of depth 1whose root labels describe
all the possible functions T→ [0:K] (one of them is copiesu0). Furthermore, T ′ outputs ι(out).

9.3.3.3 Updates of the decomposition. Assume that λui+1 is defined (otherwise we make S ′ get
blocked), and that S ′ stores a decomposition of ι ◦ λu1 ◦ · · ·λui of depth n, whose substitutions are
s1, . . . , sn, which verifies Invariant (2). Assume that Invariant (1) also holds. The update ofS ′ in posi-
tion i+1 is performed in two steps. The first one is described in the current Section 9.3.3.3 and consists
in adding the substitution λui+1 to the decomposition. The second step is described in Section 9.3.3.4
and consists in reducing the depth of the substitution if some nodes with a single child are met.

Recall thatλui+1(out) has shape outα for someα ∈ (B⊎T)∗. WewantS ′ to output s1◦· · ·◦sn(α).
For this purpose, it needs to compute the value s1 ◦ · · · ◦ sn(r) for all r ∈ Twhich occurs in α. We thus
define by decreasing induction the functions usedj : T → [0:K] for 1 ⩽ j ⩽ n, which describe how
many copies of the sj(r) are necessary to compute s1 ◦ · · · ◦ sn(α), following Claim 9.24:

▶ usedn(r) := |α|r for all r ∈ T;
▶ usedj(r) :=

∑
s∈T |sj+1(s)|r × usedj+1(s) for all r ∈ T and 1 ⩽ j ⩽ n−1.

Jump to contents

9.3. FROM BOUNDED TO COPYLESS STREAMING STRING TRANSDUCERS 219

Intuitively, the usedj(r) represent the number of hoarded copies of sj(r)which will be “consumed”
to output s1 ◦ · · · ◦ sn(α). Therefore, we want to subtract these values to the labels of the nodes, since
the latter describe the number of copies of the sj(r) which are stored by S ′.

Claim 9.28 (Consuming values)

Assume that h labels a node of depth 2 ⩽ j ⩽ n in some tree of the decomposition and that g
labels its parent. We define h := h− usedj and g := g− usedj−1. If h ⩾ 0, then g ⩾ 0 and:

g(r) =
∑
s∈T

|sj(s)|r × h(s). (9.28)

Proof. Recall that g(r) =
∑

s∈T |sj(s)|r × h(s), therefore we get by definition of used:

g(r)− usedj−1(r) =
∑
s∈T

|sj(s)|r × (h(s)− usedj(s)). ◀

We are ready to update the decomposition and the substitutions hoarded, and to produce the output:

(1) We first replace each label g in the decomposition by g from Claim 9.27. This operation may
create negative labels, but since one leaf is labelled by copiesui , we get copiesui ⩾ 0 by Lemma 9.20;

(2) Hence by Claim 9.27, there is a root-to-leaf branch in a tree whose labels are nonnegative. We
choose such a branch and consume usedj(r) copies of the hoarded sj(r)which correspond to the
nodes along this branch. We then output s1 ◦ · · · ◦ sn(α) thanks to Claim 9.24;

(3) Then we add a layer n+1 to the decomposition. We define sn+1 := λui+1

∣∣
T
(this substitution is

K-bounded sinceT is so). For each leaf of a tree which is labelled by g, we create several children
labelled by the possible h : T→ [0:K] such that for all r ∈ T we have:

g(r) =
∑
s∈T

|sn+1(s)|r × h(s).

For all r ∈ T and all created leaf labelled by h, S ′ hoards h(r) copies of sn+1(r) (which is
a bounded information). Note that two created leaves cannot have the same label (otherwise
it would be the case for their parents, which is impossible thanks to the invariants). Finally by
Lemma 9.20 the node labelled by copiesui necessarily has a leaf labelled by copiesui+1;

(4) Now it remains to deal with the fact that some nodes may have negative labels, and some leaves
may have depth ℓ < n+1. We thus remove all the nodes labelled by functions which take negative
values, togetherwith their descendants and the according hoarded copies of substitutions. Finally,
we trim the resulting forest by removing all nodes which are not ancestors of some leaf of depth
n+1 (i.e. a leaf which has just been created).

9.3.3.4 Merging operation. It remains to perform a last operation if there exists 1 ⩽ j ⩽ n such that
all nodes of depth j have a single child. In this case, we want to “merge” sj and sj+1, i.e. to replace the
sequence s1, . . . , sj , sj+1, . . . , sn+1 by s1, . . . , sj ◦ sj+1, . . . , sn+1.

One has to guarantee that sj ◦sj+1 isK-bounded. This property follows by observing that wemust
have sj = λuℓ ◦ · · · ◦ λuℓ′ |T and sj+1 = λuℓ′+1 ◦ · · · ◦ λuℓ′′

∣∣
T
for some ℓ < ℓ′ < ℓ′′.

Before explaining how the trees are updated, let us show Claim 9.29.

Jump to contents

220 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Claim 9.29 (Composition preserves the structure)

Assume that h labels a node of depth j+1 in a tree of the decomposition and let g be the label of
its grandparent. Then for all r ∈ T:

g(r) =
∑
s∈T

|sj ◦ sj+1(s)|r × h(s).

Proof. By Claim 9.21, we have:∑
s∈T

|sj ◦ sj+1(s)|r × h(s) =
∑
s∈T

∑
t∈T

|sj(t)|r × |sj+1(s)|t × h(s)

The result follows by permuting the sums and using the hypothesis between depths j and j+1. ◀

The merging operation is done as follows. We transform the trees by merging each node of depth j
with its single child of depth j+1 labelled by some g, and labelling the resulting node by g. For this node,
S ′ has to hoard g(r) copies of sj ◦ sj+1(r) for all r ∈ R, which is possible thanks to the invariants and
Claim 9.24. The properties of the labels in decompositions still hold because of Claim 9.29.

9.3.4 Correctness of the construction

We finally justify that the previous construction is correct.

9.3.4.1 Final states and correctness. Given u ∈ Aω , it is clear that S ′ produces an infinite output
(resp. a finite output, resp. gets blocked) ifS produces an infinite output (resp. a finite output, resp. gets
blocked). If all the states of S were final, our construction is correct when setting all states final in S ′.
IfS has non-final states, we makeS ′ visit a final state in position i ⩾ 0 only when δ∗(q0, u[1:i]) ∈ F .

9.3.4.2 Origin semantics. In Chapter 4, we skipped the proof of Lemma 4.40 in order not to duplicate
the proof of the current section. Indeed, it is easy to see that it can directly be transferred to finite words.
In this setting, we also observe that origin semantics is preserved: given u ∈ Aω and i ⩾ 0 such that λui
is defined, if a letter b ∈ B is created by λui , then it is also created in position i by S ′.

9.4 Removing finite lookaheads via streaming string transducers

The goal of this section is to show Theorem 9.30, which is the key technical ingredient for obtaining the
finite lookarounds removal for 2DTω (Theorem 9.4). The proof is a simplification of the original proof
presented in [CDFW23, Section C] (the latter builds tree structures, we do not).

Theorem 9.30 (From finite lookaheads to bounded DSSTω)

Given a 2DTω with finite lookaheads, one can effectively build a 1-bounded DSSTω which com-
putes the same function.

Jump to contents

9.4. REMOVING FINITE LOOKAHEADS VIA STREAMING STRING TRANSDUCERS 221

Proof sketch. Themain idea is to leverage the proof of Section 9.2.4, which converts a 2DTω into
a 1-bounded DSSTω , in order to take the finite lookarounds into account. The main difficulty is
that the behavior of a 2DTω with finite lookarounds on a prefix of the input also depends on the
future, which has not been read to far. However, the number of possible behaviors is bounded,
since we only look for a regular property of the suffix. Thus we extend the construction by taking
the possible choices induced by finite lookaheads into account. As usual over infinite words, an
additional difficulty is to ensure that we produce an infinite output.

In Section 9.4.1, we first introduce the notions of extended transition function and extended
output function for 2DTω with finite lookaheads (now these functions have to take the future into
account). Then, we describe in Section 9.4.2 a DSSTω which builds an abstraction of initial and
right-to-right runs of a 2DTω with finite lookaheads while processing its input. Finally, we justify
in Section 9.4.3 that the DSSTω previously built is correct and 1-bounded. ◀

From now on, we fix a 2DTω with finite lookaheads T = (A,B,Q, q0, F, δ, λ) which computes a
function f : Aω ⇀ Bω . Without loss of generalities, we assume thatT verifies the following structural
properties (which are used to simplify the construction):

(1) given a state q ∈ Q, all transitions leaving q go in the same direction, and left moves only use a
trivial lookaheadA∗. Formally, for any q ∈ Q, one of the following cases occur
▶ either for all a,R such that (q, a,R) ∈ Dom(δ), we have δ(q, a,R) = (_, ▷);
▶ or for all a,R such that (q, a,R) ∈ Dom(δ), we have δ(q, a,R) = (_, ◁) andR = A∗.

It is always possible to get this property by adding several transitions to T .
(2) given q ∈ Q and a ∈ A such that (q, a,R), (q, a,R′) ∈ Dom(δ) with R ̸= R′, then R⊥R′,

where this symbol means that for all u ∈ R and u′ ∈ R′, we have u′ ̸⊑ u and u ̸⊑ u′ (hence there
is always a single witness). We obtain this property as follows. Let R1, . . . , Rn be the distinct
languages such that (q, a,R) is defined if and only if R = Ri for some 1 ⩽ i ⩽ n. We replace
eachRi in the transition byRi∖

⋃
j ̸=iRjA

∗. Due to the semantics which considers the shortest
witness, such a modification does not affect the behavior of T .

(3) for all (q, a,R) ∈ Dom(δ),R is suffix closed, i.e. RA∗ = R. We obtain this property by replacing
each suchR byRA∗. Observe that it does not affect the behavior ofT . Furthermore, it does not
affect the property of Item (2). Indeed, assume that u ⊑ u′ with u ∈ RA∗ and u′ ∈ R′A∗, then
u = vw and u′ = v′w′ for some v ∈ R and v′ ∈ R′. Thus either v ⊑ v′ or v′ ⊑ v.

9.4.1 Lookahead informations

Let us first define the notions of extended transition function and extended output function for the 2DTω

with finite lookaheads T . Since these lookaheads depend on the future, it no longer makes sense to
define δ∗(q, u) for u ∈ A∗. The solution is to add a “future” component to the extended transition
function: given u ∈ A+ and v ∈ Aω , we let δ∗(−→p , u, v) = −→q whenever the run labelled by uv which
starts in (1, p) reaches position |u|+1 for the first time in state q. The output produced along this run
is denoted by λ∗(−→p , u, v). We define δ∗(←−p , u, v) and λ∗(←−p , u, v) in the same fashion.

We observe that this definition is consistent with the elementary transitions.

Claim 9.31 (Extended transitions on letters)

If δ(p, a,R) = (▷, q), then δ∗(−→p , a, v) = δ∗(←−p , a, v) = −→q if and only v ∈ RAω .

Let C ⊆ RegLang(A) be the closure of {R | (q, a,R) ∈ Dom(δ), q ∈ Q, a ∈ A} under taking
residuals and intersections. Intuitively, this set describes all combinations of lookahead conditions, pos-

Jump to contents

222 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

sibly after reading some letters. The set Look ⊆ RegLang(A) is defined as (C ∪ {A∗})∖∅ (we remove
the empty language since it accounts for contradictory combinations of conditions).

Claim 9.32 (Future languages)

The set Look is finite. For all L ∈ Look, L is suffix closed (i.e. LA∗ = L).

Proof. LetR1, . . . , Rn := {R | (q, a,R) ∈ Dom(δ), q ∈ Q, a ∈ A}. LetM1, . . . ,Mn be finite
monoids which recognize respectivelyR1, . . . , Rn. The monoidM1 × · · · ×Mn recognizes any
language of Look, hence this set is finite. Furthermore, we have assumed in Item (3) that Ri was
suffix closed, and this property is preserved under taking intersections and residuals. ◀

9.4.2 Construction of the streaming string transducer

Nowwe are ready to build aDSSTω S which simulates the runs ofT , as we did in Section 9.2.4without
finite lookaheads. The main difficulty to perform such a simulation is that theDSSTω has a priori no ac-
cess to the information of which finite lookahead is admissible. Therefore, it will follow several possible
runs in parallel and verify whether the assumed choices for finite lookaheads are indeed valid.

9.4.2.1 Information stored by S . After reading u ∈ A∗, the machine S will keep track of:

(1) a function δ-rightu : Q × Look ⇀ Q and a finite set of registers rightp,L for p, L ∈ Q × Look.
These elements will describe the right-to-right runs of T labelled by ⊢u;

(2) a function δ-initialu : Look × Look ⇀ Q and a finite set of registers frozenF and nextF,L for
F,L ∈ Look. These elements will describe the initial runs ofT labelled by ⊢u. In more detail, F
andL describe the (regular) conditions3 which have to be verified in the future for the state of the
initial run to be δ-initialu(F,L) when the current position is reached for the first time.

The main idea is that δ-rightu and δ-initialu are finite abstractions of δ∗, where the word v ∈ Aω is
replaced by a language L ∈ Look. Formally, we want S to maintain the following invariants:

(1) (a) if δ-rightu(p, L) = q, then for all v ∈ LAω , we have δ∗(←−p ,⊢u, v) = −→q and
λ∗(←−p ,⊢u, v) = JJrightp,LKKu (where JJ·KK denotes the values of registers in S);

(b) if v ∈ Aω is such that δ∗(←−p ,⊢u, v) = −→q , then there exists L ∈ Look such that v ∈ LAω

and δ-rightu(p, L) is defined;
(c) if δ-rightu(p, L1) and δ-rightu(p, L2) are defined, then either L1⊥L2 or L1 = L2.

(2) (a) if δ-initialu(F,L) = q, then F ∩ L ̸= ∅ and for all v ∈ (F ∩ L)Aω , we have
δ∗(−→q0 ,⊢u, v) = −→q and λ∗(−→q0 ,⊢u, v) = JJoutKKuJJfrozenF KKuJJnextF,LKKu;

(b) if v ∈ Aω is such that δ∗(−→q0 ,⊢u, v) = −→q , then there exist L, T ∈ Look such that
v ∈ (L ∩ T)Aω and δ-initialu(L, T) is defined;

(c) if δ-initialu(F1, L1) and δ-initialu(F2, L2) are defined then either F1⊥F2, or F1 = F2 and
(L1⊥L2 or L1 = L2).

9.4.2.2 Updating the right-to-right runs. Assume that S has computed δ-rightu and δ-initialu after
reading u ∈ A∗, so that Invariants (1) and (2) hold. Given a ∈ A, we explain howS builds δ-rightua.
Given p0 ∈ Q andL ∈ Look, the value δ-rightua(p0, L) is defined if and only if there exist 0 ⩽ n < |Q|,
q1, p1, . . . , qn, pn, q ∈ Q, L1, . . . , Ln, R ∈ Look such that:

3The reader may ask why having a single component (eitherF orL) would not be sufficient. The reason is thatF will contain
“frozen” conditions, while the new conditions when moving forward on the input will be added to L. If the guess was correct,
then F is finally verified at some point (by definition of finite lookaheads). At this point the machine is certain that frozenF is a
portion of the output and therefore it can produce it. This way, we shall guarantee that the output is infinite.

Jump to contents

9.4. REMOVING FINITE LOOKAHEADS VIA STREAMING STRING TRANSDUCERS 223

▶ δ(pn, a, R) = (▷, q) and for all 0 ⩽ i < n, δ(pi, a, A∗) = (◁, qi+1);
▶ for all 1 ⩽ i ⩽ n, δ-rightu(qi, Li) = pi;
▶ L = R ∩

⋂n
i=1(a

−1Li).

The intuition behind these conditions follows from Section 9.2.4.2 (see also Figure 4.24). The main
difference is that we also update the language L, which corresponds to the lookahead conditions that
still have to be checked: we have to see a word inR and words in a−1Li for a run to be valid.

Claim 9.33 (Uniqueness in the construction)

Given p0 ∈ Q,L ∈ Look, if such q1, p1, . . . , qn, pn, q and L1, . . . , Ln, R exist, they are unique.

Proof. Assume that one can find other sequences q′1, p′1, . . . , q′n′ , p′n′ , q andL′
1, . . . , L

′
n′ , R′ such

that the result holds. First observe that if n = 0 then n′ = 0 (because all transitions leaving qmust
go in the same direction), and then wemust haveR = R′, therefore q = q′. Assume that n, n′ > 0
and let j ⩾ 1 be the smallest index such that (qj , pj , Lj) ̸= (q′j , p

′
j , L

′
j). Since left moves useA∗

as a lookahead, we must have qj = q′j . Now if Lj⊥L′
j , then a−1Lj ∩ a−1L′

j = ∅, hence they
would not give the same L ̸= ∅, thus Lj = L′

j and qj = q′j . Finally n = n′ and q = q′. ◀

Thanks to Claim 9.33, one can set δ-rightua(p, L) := q in a well-defined fashion. Furthermore, we
update the registers by rightp0,L 7→ λ(p0, a, A

∗)rightq1,L1
λ(p1, a, A

∗) · · · rightqn,Ln
λ(pn, a, R).

Claim 9.34 (Invariant preservation)

After this operation, Invariant (1) holds for δ-rightua.

Proof idea. The ideas are similar to that of Claims 4.23 and 9.17. Observe that having n < |Q|
is sufficient, since otherwise one would have pi = pj for some 0 ⩽ i < j < n, and such a run
never occurs with some suffix v ∈ Aω . Let us justify that if δ-rightua(p, L1) and δ-rightua(p, L2)
are defined, then L1⊥L2. Assume the converse and let w ∈ L1 which has a prefix in L2. One
obtains a contradiction by considering the languages used at the first time the sequences defining
δ-rightu(p, L1) and δ-rightu(p, L2) differ, as we did in Claim 9.33. ◀

9.4.2.3 Updating the initial runs. Given a ∈ A, we explain howS builds δ-initialua. The construc-
tion is close to that of Section 9.4.2.2, but we have to deal with the two components of δ-initialua. Given
F,L ∈ LookwithF∩L ̸= ∅, the value δ-initialua(F,L) is defined if and only if there exist0 ⩽ n < |Q|,
p0, q1, p1, . . . , qn, pn, q ∈ Q and F ′, L′, L1, . . . , Ln, R ∈ Look such that:

▶ δ-initialu(F ′, L′) = p0;
▶ δ(pn, a, R) = (▷, q) and for all 0 ⩽ i < n, δ(pi, a, A∗) = (◁, qi+1);
▶ for all 1 ⩽ i ⩽ n, δ-rightu(qi, Li) = pi;
▶ L = R ∩ L′ ∩

⋂n
i=1(a

−1Li) and F = a−1F ′.

The intuition behind this construction is depicted in Figure 9.35. Observe that the language F
roughly reproduces the conditions of F ′, while all the new conditions are added in L. This way, we
shall ensure that the unchanged F can be verified after reading a finite amount of letters.

Claim 9.36 (Uniqueness in the construction)

If such p0, q1, p1, . . . , qn, pn, q and F ′, L′, L1, . . . , Ln, R exist, they must be unique.

Jump to contents

224 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

⊢ a
p0

q1
p1

q2

p2
q3

p3 q

Figure 9.35: Structure of an initial run.

Thanks to Claim 9.36, one can set δ-initialua(F,L) := q in a well-defined fashion. Furthermore, we
update the registers nextF,L 7→ nextF ′,L′λ(p0, a, A

∗)rightq1,L1
λ(p1, a, A

∗) · · · rightqn,Ln
λ(pn, a, R).

For the case of frozenF which does not depend on L, we observe that there exists at most one F ′

such that δ-initialu(F ′, L′) is defined for some L′ ∈ Look and F = a−1F ′. Indeed, the converse would
contradict Item (2)(c). Therefore, we update frozenF 7→ frozenF ′ in a well-defined fashion.

Claim 9.37 (Invariant preservation)

After this operation, Invariant (2) holds for δ-initialua.

9.4.2.4 Producing an output. Once the two previous operations are performed,S tries to add a value
in out. The latter is done as follows. First, we check if there existsL ∈ Look such that δ-initialua(A∗, L)
is defined. Due to Item (2)(c), it means that we have F = A∗ whenever δ-initialua(F,L) is defined. In
this case we send frozenA∗ in out and replace the frozen by the next, formally:

▶ we update out 7→ out frozenA∗ ;
▶ for all L ∈ Look such that the value δ-initialua(A∗, L) is defined, we update frozenL 7→ nextA∗,L

and nextA∗,L 7→ ε;
▶ we replace δ-initialua by the function g : Look × Look ⇀ Q defined as follows: g(L,A∗) := q

whenever δ-initialua(A∗, L) = q.

It is easy to see that this operation preserves the Invariant (2) for δ-rightua.

9.4.3 Correctness of the construction

In this section, we justify that the machine S computes f and is 1-bounded.

9.4.3.1 Correctness on the domain. Let v ∈ Dom(f), we want to justify thatS produces an infinite
output which is f(v). First, it follows from Invariant (2) that for all i ⩾ 0, there exist uniqueFi, Li with
v[i+1:] ∈ (Fi∩Li)A

ω . Thenλ∗(−→q0 ,⊢v[1:i], v[i+1:]) = JJoutKKv[1:i]JJfrozenFiKKv[1:i]JJfrozenFi,LiKKv[1:i].
Therefore we obtain JJoutKKv[1:i]JJfrozenFi

KKv[1:i]JJfrozenFi,Li
KKv[1:i] → f(v).

To conclude, it is thus sufficient to show that |JJoutKKv[1:i]| → ∞. For this, we first claim that the oper-
ation described in Section 9.4.2.4 is applied infinitely often4. Indeed, given i ⩾ 0, there exists j ⩾ i such

4This is the reason why we needed the function δ-initial to start from Look× Look and not only Look.

Jump to contents

9.5. COMPOSITION OF DETERMINISTIC REGULAR FUNCTIONS 225

that v[i:j] ∈ Fi∩Li. If the operation of Section 9.4.2.4 is not applied before reading position j, one can
showFj = (v[i:j])−1Fi, thus ε ∈ Fj . SinceFj ∈ Look is suffix closed byClaim9.32, thenFj = A∗ and
the operation of Section 9.4.2.4 is applied in position j. As a consequence, we have JJnextFi,Li

KKv[1:i] = ε

infinitely often. Furthermore, one can show that the function i 7→ |JJoutKKv[1:i]JJfrozenFi
KKv[1:i]| is non-

decreasing. Thus we must have |JJoutKKv[1:i]JJfrozenFiKKv[1:i]| → ∞. But since JJfrozenFiKKv[1:i] is added
into out infinitely often, this implies that |JJoutKKv[1:i]| → ∞.

9.4.3.2 Correctness out of the domain. We first assume that all the states ofT are final, i.e. F = Q.
By a similar argument, one can show that if v ̸∈ Dom(f), then eitherS gets blocked at some point, or it
produces a finite output. IfF ̸= Q, one would have to adapt the construction by adding a component to
the output of δ-initialu for u ∈ A∗, in order to keep track of the fact that a right-to-right run has visited
an accepting state or not, as mentioned in Section 9.2.4.3.

9.4.3.3 1-boundedness of the streaming string transducer. We finally justify thatS is 1-bounded.
For this, we first observe that an analogue of Claim 9.18 holds.

Claim 9.38 (Copies are loops)

Let u ∈ A∗ and 0 ⩽ i ⩽ |u|. Let s be the substitution applied by S when reading u[i+1:|u|],
after having read u[1:i]. For all p ∈ Q, if rightp occurs k ⩾ 1 times in s(rightq), there exists
v ∈ Aω such that δ∗(←−q , u, v) has shape−→r and maxi-run(←−q , u, v) visits k times (|⊢u[1:i]|, p).

Proof idea. By induction on |u|. ◀

Claim 9.38 immediately gives a contradiction if k ⩾ 2, since maxi-run(←−q , u, v) cannot visit twice
the same configuration without looping. Similar results can be shown when dealing with frozen, next
and out. All in all, S is 1-bounded (assuming that it was trim, i.e. that any of its states was accessible).

9.5 Composition of deterministic regular functions

The goal of this section is to show closure under composition of deterministic regular functions, which
was first claimed in [CDFW23, Theorem 3.1]. The proof is inspired by the historical proof of [CJ77] for
regular functions of finite words, which relies on the fact that lookarounds can be removed for 2DT .

Theorem 9.39 (Composition of deterministic functions)

The class of deterministic regular functions is (effectively) closed under composition.

Proof. Let f : Aω ⇀ Bω (resp. f ′ : Bω ⇀ Cω) be a deterministic regular function computed
by the normalized 2DTω T = (A,B,Q, q0, F, δ, λ) (resp. T ′ = (B,C,Q′, q′0, F

′, δ′, λ′)). By
Theorem 9.4, we only need to build a 2DTω with finite lookarounds which computes f ′ ◦ f . Since
themachines are normalized, we do not have to dealwith final conditions. Furthermore, we assume
without losing generalities that T produces exactly one letter at each transition, i.e. λ(q, a) ∈ B
for all (q, a) ∈ Dom(λ) with a ∈ A. Indeed, one can replace outputs ε by an extra fresh letter#
which is systematically ignored by T ′. Formally, when T ′ moves ◁ (resp. ▷) on its tape and meets
letter#, it goes on moving ◁ (resp. ▷) until it meets another letter.

Jump to contents

226 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Let u ∈ Dom(f) be such that f(u) ∈ Dom(f ′). Let (q1, i1) → (q2, i2) → · · · (resp.
(q′1, i

′
1) → (q2, i

′
2) → · · ·) be the accepting n-run of T (resp. of T ′) labelled by u (resp. by

f(u)). Observe that for all i′ ⩾ 1 we have f(u)[i′] = λ(qi′ , u[ii′]) because T produces exactly
one letter at each transition. Thus for all ℓ ⩾ 1, we have f(u)[i′ℓ] = λ(qi′ℓ , u[ii′ℓ]).

u ∈ Aω⊢

Run ofT

qi′
ℓ

ii′ℓ

f(u) ∈ Bω⊢

Run ofT ′

i′ℓ

q′ℓ

Figure 9.40: Product construction for the composition of 2DTω .

The main idea is to build U by doing a product construction of T and T ′. When its input
is u, we want U to successively build the pairs of configurations (q′ℓ, i′ℓ), (qi′ℓ , ii′ℓ) for ℓ ⩾ 1, as
depicted in Figure 9.40. Formally, the states q′ℓ and qi′ℓ can be maintained in the bounded memory
of U . The position ii′ℓ will be the current position of U . However, i′ℓ can only be maintained
implicitly, because the input of U is u ∈ Aω and not f(u) ∈ Bω .

Now, let us explain the updates of U . Let ℓ ⩾ 1 and assume that U is in position ii′ℓ , that it
stores q′ℓ, and qi′ℓ and that it has output λ

′(q′1, f(u)[i
′
1]) · · ·λ′(q′ℓ−1, f(u)[i

′
ℓ−1]) so far. We want

U to preserve this invariant at step ℓ+1. First note that b := f(u)[i′ℓ] = λ(qi′ℓ , u[ii′ℓ]) can be
determined by U . Thus U can compute δ′(q′ℓ, b) = (q′ℓ, ⋆) and output λ′(q′ℓ, b). It remains to
determine qi′ℓ+1

and move to ii′ℓ+1
. Two cases occur (beware that they are not symmetrical):

▶ eitherT ′ moves forward, i.e. ⋆ = ▷. In this case, one has to determine the next configuration
of T , which is possible by computing δ(qi′ℓ , u[ii′ℓ]) and moving accordingly;

▶ or T ′ moves backward, i.e. ⋆ = ◁. In this case, one has to determine the previous configur-
ation of T . However, since T is not co-deterministic, the current configuration may have
several possible predecessors. In order to detect which is the correct one, finite lookarounds
comes in handy. The basic idea is to use them to rewind the initial n-run of T , as justified
in Claim 9.41. One only needs to check a “finite” regular property, since only a prefix of the
input has been visited by the computation of the two-way transducer.

Claim 9.41 (Finite lookaheads for rewinding initial runs)

For all p, q ∈ Q and a ∈ A, one can build a regular languages L,R ⊆ A∗ such that
the following conditions are equivalent for all v ∈ A∗ and 1 ⩽ i ⩽ |v|:
▶ v[1:i] ∈ L, v[i] = a and v[i+1:|v|];
▶ the longest initial n-run of T labelled by v contains the sequence (p, i−1) →

(q, i).

Proof idea. The behavior of a 2DTω (or simply a 2DT) over a finite input can be de-
scribed using regular languages (recall the notion of transition monoid). ◀

By using a bunch of finite lookarounds of the previous form, one can determine the previous

Jump to contents

9.6. DECOMPOSITION OF DETERMINISTIC REGULAR FUNCTIONS 227

configuration (ii′ℓ+1
, qi′ℓ+1

) of T . Only one of the finite lookarounds will be a admissible,
since the configuration (ii′ℓ , qi′ℓ) is visited only once in the accepting n-run of T .

Our machineU produces the same output asT ′ on input f(u), that is f ′(f(u)) ∈ Cω . Con-
versely, if we haveu ̸∈ Dom(f ′◦f), the computationwill either fail or produce a finite output. ◀

To conclude Section 9.5, let us discuss a low hanging consequence for DSSTω . Informally, a DSSTω

with finite lookarounds can be defined as aDSSTω which selects its transitions depending on disjoint sets
of regular languages, as explained for 2DTω (or even 1DTω) with finite lookarounds in Definition 9.2.

Corollary 9.42 (Finite lookaround removal for DSSTω)

The functions computed by a copyless (orK-bounded)DSSTω with finite lookarounds are exactly
the deterministic regular functions. Furthermore, the conversions are effective.

Proof sketch. A function computedby a copyless or aK-boundedDSSTω with finite lookarounds
S can (effectively) be written as the composition of a deterministic regular function (computed
by a 1DTω with finite lookarounds) which precomputes the run of S and determines which fi-
nite lookarounds are admissible, and a deterministic regular function (computed by a copyless or a
K-bounded DSSTω) which simulates the updates of S . We conclude by Theorem 9.39. ◀

9.6 Decomposition of deterministic regular functions

In this section, we show that deterministic regular functions can be obtained as a composition of basic
functions. This result can be seen as an analogue of Theorem 1.32 over infinite words. It illustrates the
fact that deterministic regular functions mainly differ from the sequential ones due to their abitiliy to
copy or reverse finite factors of the input (using map-copy-reverseω from Example 8.28).

Theorem 9.43 originates from [CDFW23, Theorem 3.6]. Its proof is somehow technical and it con-
fronts once more the main difficulty of this chapter: contrary to regular functions, deterministic regular
functions cannot check properties which concern the “infinite” future of the input.

Theorem 9.43 (Decomposition of deterministic regular functions)

A function of infinitewords is deterministic regular if and only if it can bewritten as a composition
of sequential functions and map-copy-reverseω functions. The conversions are effective.

Proof sketch. The right-to-left implication is clear by Theorem 9.39 and since the sequential and
map-copy-reverseω functions are deterministic regular. It remains to show the decomposition result.
Analogue results over finite words (Theorems 1.32 and 1.45) were shown in [Boj18, BS20] by using
factorization forests: they first build a forest with a rational function (Theorem 2.21), and then use
its structure to simulate the runs of a transducer using basic functions.

We intend to follow a similar proof sketch for infinite words. Even if factorization forests can
be generalized in this setting (see e.g. [Col10]), it is not knownwhether they can be computed using
compositions of sequential andmap-copy-reverseω functions. Therefore we use instead a weakened
object named forward factorization forests, introduced by Colcombet in [Col07]. We claim in Sec-
tion 9.6.1 that forward factorization forests of bounded height can be computed by a sequential
function. Then, we introduce in Section 9.6.2 a class of functions of both finite and infinite words
Cwhich is closed under composition, and show by induction in Section 9.6.3 that this class enables
to “simulate” the runs of a 2DTω when a forward factorization forest of the input is given (using
both finite and infinite words is necessary for the induction step). ◀

Jump to contents

228 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Before giving the detail of this proof, let us discuss an easy consequence for regular functions. To the
knowledge of the author, Corollary 9.44 was not explicitly known in the literature.

Corollary 9.44 (Decomposition of regular functions)

A function of infinite words is regular if and only if can be written as a composition of rational
functions and map-copy-reverseω functions. The conversions are effective.

Proof. The right-to-left implication follows since regular functions are closed under composition
(Theorem8.36). For the converse implication, a function computed by a 2DTω withω-lookarounds
can (effectively) be written as the composition of a rational function (computed by an ω-bimachine
which precomputes which ω-lookarounds) succeed in each position of the input, and a determ-
inistic regular function which simulates the 2DTω once the ω-lookarounds are known. We then
apply Theorem 9.43 to decompose this deterministic regular function. ◀

The rest of this section is devoted to a detailed proof of Theorem 9.43.

9.6.1 Forward factorization forests

First, we study the notion of forward factorization forest introduced in [Col07]5. Recall that ⟨t1⟩ · · · ⟨tn⟩
denotes a finite tree whose root is not labelled, and whose subtrees are t1, . . . , tn. We extend this nota-
tion to infinitely branching trees, by writing ⟨t1⟩⟨t2⟩ · · · for such a branching.

Definition 9.45 (Forward factorization forest)

Let µ : A∗ →M be a monoid morphism and u ∈ A∞. We say thatF is a forward µ-forest of u if:

▶ either u = a ∈ A andF = a;
▶ or F = ⟨F1⟩ · · · ⟨Fn⟩, u = u1 · · ·un and for all 1 ⩽ i ⩽ n, Fi is a forward µ-forest of
ui ∈ A∞ ∖ {ε} and for all 1 < i, j < n, µ(ui)µ(uj) = µ(ui);

▶ or F = ⟨F1⟩⟨F2⟩ · · · where u = u1u2 · · · ∈ Aω , for all 1 ⩽ i, Fi is forward µ-forest of
ui ∈ A+, and for all 1 < i, j, µ(ui)µ(uj) = µ(ui);

Observe that the second rule is aweakening of the idempotent rule for factorization forests presented
in Definition 2.17. For n = 2, it does not provide any constraint on the factorization. For n ⩾ 3, it
implies that all the inner factors are idempotent (since we have µ(ui)µ(ui) = µ(ui) for 1 < i < n)
and “absorbing on the left” (henceL-equivalent in the sense ofGreene’s relations, see e.g. [Col11]), but not
necessarily equal. Furthermore, there is no assumption on the first and the last factor (the latter can even
be an infinite word). Finally, the third rule is an infinitely branching version of the second rule.

Given d ⩾ 1 and u ∈ A∞, we let f-Forestsdµ(u) be the set of all forward µ-forests of u of height at
most d (defined by induction). For u ∈ A+, a tree F ∈ f-Forestsdµ(u) can be seen as a finite word over
the alphabet A ⊎ {⟨, ⟩}. For u ∈ Aω , F ∈ f-Forestsdµ(u) can be seen as an infinite word. In this case,
some of the opening brackets may remain open forever, since e.g. ⟨F⟩ has to be encoded by ⟨F whenF
is infinite. As for factorization forests, we let the function worddµ : f-Forestsdµ → A∞ be the morphism
which removes the letters in {⟨, ⟩}, i.e. which mapsF ∈ f-Forestsdµ(u) to u ∈ A∞.

The next result originates from [Col07, Theorem 1]. However, it is not directly stated under this
formalism since the author uses forward Ramseyan splits instead of forward factorization forests. An
explicit reformulation in terms of forward factorization forests is available in [Boj09, Theorem 7] which
we follow in Theorem 9.46. We directly instantiate the result in the case of infinite words.

5Formally, this paper describes the equivalent notion of forward Ramseyan splits.

Jump to contents

9.6. DECOMPOSITION OF DETERMINISTIC REGULAR FUNCTIONS 229

Theorem 9.46 (Sequential Simon)

Given a morphism µ : A∗ → M into a finite monoid, one can build a sequential function
f-forestµ : Aω → f-Forests|M|

µ such that word|M|
µ ◦ f-forestµ is the identity function overAω .

In Lemma 2.15, we have seen that the runs of a 2DT along a block of factors having the same idem-
potent value under the transition monoid of the 2DT enjoy a particular shape. Recall that we have ex-
tended the notion of transition monoid to 2DTω in Section 9.2.4. Lemma 9.48 adapts Lemma 2.15 for
forward factorization forests, i.e. with different idempotents which are “absorbing on the left”.

u1 u2 u3 u4 u5 u6
q

r p

p

p p

Figure 9.47: Shape of a run along a block in a forward factorization forest.

Lemma 9.48 (Runs in forward factorization forests)

Let T = (A,B,Q, q0, F, δ, λ) be a 2DTω with transition monoid µ : A∗ → T. Let u =
u1u2 · · · ∈ A∞ be such that µ(ui)µ(uj) = µ(ui) for all 1 < i, j such that ui and uj are
defined and are not the last factor (i.e. ui+1 and uj+1 are also defined). If δ∗(−→q , u1u2) = −→p ,
then maxi-run(−→q , u) has shape maxi-run(−→q , u1u2)→ ρ3 → ρ4 → · · · where:

(1) for all i ⩾ 3, ρi starts in the first configuration of ρ which visits ui;
(2) for all i ⩾ 3, ρi begins with a configuration of shape (p, _) (i.e. it starts in p);
(3) for all i ⩾ 3 such that ui is not the last factor, ρi only visits the positions of ui and ui−1 (it

cannot go back to ui−2).

Proof. We have δ∗(−→q , u1u2) = −→p , thus δ∗(−→q , u1u2 · · ·ui−1) =
−→p for all i ⩾ 2 such that ui is

defined, since µ(u2 · · ·ui−1) = µ(u2). This means that ui is visited by maxi-run(−→q , u1u2), and

Jump to contents

230 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

furthermore that this visit starts in state p, giving Items (1) and (2) by defining ρi accordingly. For
Item (3), let i ⩾ 3 be such thatui is defined andnot the last factor. We show thatρi only visitsui and
ui−1. First, observe that this rundoes not visitui+1 by construction ofρi+1. Second, let us consider
the state r seen in the last visit of the first position of ui−1 in ρi−1 (or in maxi-run(−→q , u1u2) if
i = 3). Since µ(ui−1ui) = µ(ui−1) because ui is not the last factor, we have δ∗(−→r , ui−1ui) =
δ∗(−→r , ui−1) = −→p (this last equality follows from Item (2), because it describes the beginning of
ρi). This means that when starting from r in the first position of ui−1, T will execute the end of
ρi−1, then ρi, and it will eventually leave ui−1ui “by the right”. Hence the run ρi stays in ui−1ui,
until it goes to ui+1 in state p (and this is by construction the beginning of ρi+1). ◀

The shape ofmaxi-run(−→q , u) in Lemma 9.48 is depicted in Figure 9.47. This figure is roughly similar
of Figure 2.14, but let us highlight the key differences between them. First, we have no control on the
runs starting in the first and the last (if it exists) factors. The run starting in the last factor may even go
back to u1. Second, since the µ(ui) are not all the same, the runs ρi for i ⩾ 3may not cross the border
between each ui−1 and ui in the same fashion. The only information we get is that they begin in state p.

Another difference between factorization forests and forward factorization forests is that the case
of Lemma 2.15 is symmetrical (i.e. it also holds when studying maxi-run(←−q , u)) while Lemma 9.48 is
not. This is first because in our case the input word may be infinite, thus it does not make sense to enter
it “from the right”. More interestingly, the reader is invited to note that the conditions µ(ui)µ(uj) =
µ(ui) are not symmetrical and provide no information on the runs which start on the right.

9.6.2 A class of functions closed under composition

Now, let us describe a class of functions C which goes both from finite words to finite words and from
infinite words to infinite words (i.e. the functions of C has type (A∗ ⇀ B∗) ∪ (Aω ⇀ Bω)). Our goal
is to show that any deterministic regular function can be computed as the restriction to infinite words
of a function from C. However, this proof will be done by induction both over finite and infinite words,
and we shall not know a priori if the current input is finite or not6.

A one-way deterministic transducer of finite and infinite words consists of a 1DT (A,B,Q, q0, F, δ, λ)
and a 1DTω (A,B,Q, q0, Fω, δ, λ), which share the sameA,B,Q, q0, δ and λ. Such a machine there-
fore describes a function of type (A∗ ⇀ B∗) ∪ (Aω ⇀ Bω). The key property is that its runs over
finite and infinite words have the same structure. We let the class of sequential functions of finite and
infinite words be the class of functions computed by these machines.

Given an alphabetA and a fresh symbol# ̸∈ A, we also build the function basic-copy-reversewhich
has type ((A ⊎ {#})∗ → (A ⊎ {#})∗) ∪ ((A ⊎ {#})ω → (A ⊎ {#})ω) and is defined by:

▶ basic-copy-reverse(u) = map-copy-reverse(u) for u ∈ (A ⊎ {#})∗, see Example 1.23;
▶ basic-copy-reverse(u) = map-copy-reverseω(u) for u ∈ (A ⊎ {#})ω , see Example 8.28.

Since wemay use several distinct separating symbols, we shall say that basic-copy-reverse has separator#
to say explicitly that the letter# is the one used to separate the factors of the input.

Definition 9.49 (Class C)

The class C is the smallest class of functions which is closed under composition and contains both
sequential functions of finite and infinite words and the basic-copy-reverse functions.

Before coming to the main proof in Section 9.6.3, we describe useful properties of this class C.

6Intuitively, checking if something is infinite or not requires ω-lookarounds, which are forbidden in our setting.

Jump to contents

9.6. DECOMPOSITION OF DETERMINISTIC REGULAR FUNCTIONS 231

Example 9.50 (Map copy)

The function basic-copy : (A ⊎ {#})∞ → (A ⊎ {#})∞ is obtained from basic-copy-reverse by
replacing each copymirror factor‹ui byui. This functionbelongs toC. Indeed,we apply basic-copy-reverse
twice, which outputs a word of shape u1#ũ1#ũ1#u1#u2 · · · , and the one can easily remove
the useless pieces thanks to a sequential function of finite and infinite words.

More interestingly, we show that the class C is closed under a “map” operator, which applies a given
function to a sequence of finite or infinite words separated by a specific symbol. We even claim in
Lemma 9.51 one can apply distinguished functions on the first n factors.

Lemma 9.51 (Map operator)

Let f1, f2, . . . , fn : A∞ ⇀ B∞ ∈ C and # be a fresh symbol. One can build in C a function
f1#f2# · · ·#fn#: (A ⊎ {#})∞ ⇀ (B ⊎ {#})∞ such that:

f1#f2# · · ·#fn#(u1#u2 · · ·)
= f1(u1)#f2(u2)# · · ·#fn(un)#fn(un+1)#fn(un+2) · · ·

whenever u1 ∈ Dom(f1), u2 ∈ Dom(f2),

Remark 9.52 (Map operator)

A few elements are left implicit in Lemma 9.51. First, if there are k ⩽ n factors in the input, then
f1# · · ·#fn# only applies the first functions f1, . . . , fk . Second, if the input is infinite, wemust
have f1(u1)#f2(u2)# · · · ∈ (B ⊎ {#})ω for the output to be defined.

Proof. We only deal with the case n = 1. The other cases can be treated in a similar fashion,
using sequential functions to drop specific marks on the n first pieces. Let f : A∞ ⇀ B∞ ∈ C,
we show how to build f# by induction on the construction of f . If f is sequential then we build
a sequential f# described by a one-way deterministic transducer similar to that of f , except if a
is seen, in which case it produces the (finite) final output of the transducer in the current state,
and goes back to the initial state to pursue its computation. If f = g ◦ h the result is obvious by
induction hypothesis. If f is basic-copy-reverse with separator $ (thus $ ̸= # since# is fresh), we
first apply the sequential function which turns each# into#$. Then we apply basic-copy-reverse
with separator $ on the whole input. We conclude by applying a sequential functionwhich replaces
each factor#$# by a single $, and in this case replaces the next occurrence of $ by#. ◀

We conclude this section by giving one last property of C. Observe that Theorem 1.32 exactly states
that any regular function of finite words can be written as the restriction of a function of C to finite
words. Using this result, we claim in Lemma 9.53 that the runs of a 2DTω which start on the right of a
finite input can be simulated by a function of C. Using this result will be necessary, since Lemma 9.48
provides no information to describe runs which start on the right, as mentioned above. To homogenize
the forthcoming proofs, we assume anyway that a forward factorization forest is given as input.

Lemma 9.53 (Left runs)

LetT = (A,B,Q, q0, F, δ, λ) be a 2DTω with transition morphism µ : A∗ → T. For all d ⩾ 0,
one can build a function←−−−−simul-d : (A ∪ {⟨, ⟩} ∪

←−
Q)∗ ⇀ (A ∪ {⟨, ⟩} ∪ B ∪

←−
Q ∪

−→
Q)∗ which

belongs to C, such that for all u ∈ A+,F ∈ f-Forestsµd (u) and q ∈ Q:

Jump to contents

232 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

▶ if δ∗(←−q , u) = −→p and λ∗(←−q , u) = α then←−−−−simul-d(F←−q) = αF−→p ;
▶ if δ∗(←−q , u) = −→p and λ∗(←−q , u) = α then←−−−−simul-d(F←−q) = α←−p F .

Proof. Such a function (from finitewords to finitewords) can be computed by a 2DTwhich ignores
the symbols ⟨ and ⟩. This function can be decomposed as composition of functions from C thanks
to Theorem 1.32. Recall that having a forward forest is not useful at that stage. ◀

9.6.3 Inductive construction of the runs

The core of the proof of Theorem 9.43 consists in showing Lemma 9.54 by induction on d ⩾ 1. It is an
analogue of Lemma 9.53 when the runs start on the left of a finite or infinite word.

Lemma 9.54 (Key induction step)

LetT = (A,B,Q, q0, F, δ, λ) be a 2DTω with transition morphism µ : A∗ → T. For all d ⩾ 0,
one can build a function:

−−−−→
simul-d : (A ∪ {⟨, ⟩} ∪

−→
Q)

∞
⇀ (A ∪ {⟨, ⟩} ∪B ∪

←−
Q ∪

−→
Q)

∞

which belongs to C such that for all q ∈ Q, u ∈ A∞ andF ∈ f-Forestsdµ(u):

▶ if δ∗(−→q , u) =←−p and λ∗(−→q , u) = α ∈ B∗ then−−−−→simul-d(−→q F) = α←−p F ;
▶ if δ∗(−→q , u) = ω and λ∗(−→q , u) = α ∈ Bω then−−−−→simul-d(−→q F) = α;
▶ if u ∈ A+, δ∗(−→q , u) = −→p and λ∗(−→q , u) = α ∈ B∗ then−−−−→simul-d(−→q F) = αF−→p .

Proof sketch. We build the function −−−−→simul-d by induction on d ⩾ 1. For d = 1 the result is
obvious since necessarily u = F = a. For the induction step with d + 1, Lemma 9.48 shows
that the run maxi-run(−→q , u) can be decomposed by following the structure of F . We then rely on
−−−−→
simul-d and←−−−−simul-d to build pieces of this run and we re-combine them together. ◀

The rest of Section 9.6.3 is devoted to the detailed proof of Lemma 9.54 by induction on d ⩾ 1.

Assume that the function−−−−→simul-d in C is built for some d ⩾ 1. We describe how to build the function
−−−−−−−→
simul-(d+1) in C. We first create a function from Cwhich checks if the input has a correct shape, applies
−−−−→
simul-d if it is the case, and otherwise behaves as the identity function.

Claim 9.55 (Try right)

One can build a function−−−−−→try-simul in C, which behaves:

▶ as−−−−→simul-d if the input begins with some letter−→q ∈
−→
Q ;

▶ as the identity function if it contains no−→q ∈
−→
Q .

Proof. We first apply a sequential function which writes letter $ before any−→q of the input. Then
we apply id$

−−−−→
simul-d$ from Lemma 9.51, where id denotes the identity function. ◀

Let u ∈ A∞, F ∈ f-Forestsd+1
µ (u) and q1 ∈ Q. Up to first applying a sequential function which

removes the first ⟨ and replaces the appropriate factors ⟩⟨ by #, we can assume that −→q1F has shape

Jump to contents

9.6. DECOMPOSITION OF DETERMINISTIC REGULAR FUNCTIONS 233

−→q1F1#F2#F3# · · · where Fi ∈ f-Forestsdµ(ui), ui ∈ A∞, u = u1u2 · · · and µ(ui)µ(uj) = µ(ui)
for all 2 ⩽ i such that ui is not the last factor of u.

Our goal is to simulate the run maxi-run(−→q1 , u), for this we use the slicing given by Lemma 9.48.
We first simulate the run maxi-run(−→q1 , u1u2) in Section 9.6.3.1 (this case is specific since Lemma 9.48
provides no properties of this run). For this purpose, we use alternatively the functions −−−−→simul-d and
←−−−−
simul-d. Then, we show in Section 9.6.3.2 how to build the runs ρ3, ρ4, The main idea is to build all
these runs in parallel, while crucially relying on the fact that they all begin in the same state.

9.6.3.1 Building the run in u1u2. We first deal with the run maxi-run(−→q1 , u1u2) which is not con-
trolled by Lemma 9.48. The enumeration below describes the operations performed.

(1) We first apply−−−−−→try-simul# which outputs the following (with α1 := λ∗(−→q1 , u1)):
(a) if δ∗(−→q1 , u1) = ω (necessarily u = u1 ∈ Aω) and α1 ∈ Bω , then α1;
(b) if δ∗(−→q1 , u1) =←−q2 , then α1

←−q2F1#F2 · · · ;
(c) if δ∗(−→q1 , u1) = −→q2 (necessarily u1 ∈ A+), then α1F1

−→q2#F2 · · · .
(2) We apply a sequential function which replaces the first −→q # with q ∈ Q by #−→q . Once this is

done, we apply once more−−−−−→try-simul#, which yields the following cases:
(a) if δ∗(−→q1 , u1) = ω and α1 ∈ Bω , then α1;
(b) if δ∗(−→q1 , u1) =←−q2 , then α1

←−q2F1#F2 · · · ;
(c) if δ∗(−→q1 , u1) = −→q2 and (with α2 := λ∗(−→q2 , u2)):

(i) u = u1, then α1F1
−→q2 ;

(ii) δ∗(−→q2 , u2) = ω and α2 ∈ Bω , then α1F1#α2;
(iii) if δ∗(−→q2 , u2) =←−q3 , then α1F1#α2

←−q3F2 · · · ;
(iv) if δ∗(−→q2 , u2) = −→p , then α1F1#α2F2

−→p · · · .
(3) In Item (2)(c)(iii), we need to compute←−−−−simul-d(F1

←−q3), thus to create a factor F1
←−q3 . For this, we

add a fresh symbol $ beforeF2 (if it exists) and apply basic-copy with separator $, which yields:
(a) if δ∗(−→q1 , u1) = ω and α1 ∈ Bω , then α1;
(b) if δ∗(−→q1 , u1) =←−q2 , then α1

←−q2F1#$α1
←−q2F1#$F2 · · · ;

(c) if δ∗(−→q1 , u1) = −→q2 and:
(i) u = u1, then α1F1

−→q2$α1F1
−→q2 ;

(ii) δ∗(−→q2 , u2) = ω and α2 ∈ Bω , then α1F1#α2;
(iii) if δ∗(−→q2 , u2) =←−q3 , then α1F1#α2

←−q3$α1F1#α2
←−q3$F2 · · · ;

(iv) if δ∗(−→q2 , u2) = −→p , then α1F1#α2$α1F1#α2$F2
−→p · · · .

Then we use a well-chosen sequential function to remove the useless symbols, which yields:
(a) if δ∗(−→q1 , u1) = ω and α1 ∈ Bω , then α1;
(b) if δ∗(−→q1 , u1) =←−q2 , then α1

←−q2F1#F2 · · · ;
(c) if δ∗(−→q1 , u1) = −→q2 and:

(i) u = u1, then α1F1
−→q2 ;

(ii) δ∗(−→q2 , u2) = ω and α2 ∈ Bω , then α1α2;
(iii) if δ∗(−→q2 , u2) =←−q3 , then α1α2$F1

←−q3$#F2 · · · ;
(iv) if δ∗(−→q2 , u2) = −→p , then α1α2F1#F2

−→p · · · .
(4) In order to compute maxi-run(←−q3 , u1), we build the function←−−−−−try-simul := id$

←−−−−
simul-did. This

function is inspired by−−−−−→try-simul fromClaim 9.55. Observe that if it meets not $, it will just behave
as the identity function id. Therefore we apply the function←−−−−−try-simul#id.

(5) By iterating |Q| times the previous steps, one can simulate the whole runmaxi-run(−→q1 , u1u2). We
obtain the following (where α := λ∗(−→q1 , u1u2) if u2 exists and α := λ∗(−→q1 , u1) otherwise):
(a) if δ∗(−→q1 , u1) = ω or δ∗(−→q1 , u1u2) = ω and α ∈ Bω , then α;
(b) if δ∗(−→q1 , u1) =←−q2 or δ∗(−→q1 , u1u2) =←−q2 , then α←−q2F1#F2 · · · ;
(c) if δ∗(−→q1 , u1) = −→p and u = u1, then αF1

−→p ;

Jump to contents

234 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

(d) if δ∗(−→q1 , u1u2) = −→p then αF1#F2
−→p · · · .

9.6.3.2 Building the run in u3u4 · · · . Once maxi-run(−→q1 , u1u2) is treated, we are ready to build the
runs ρi from Lemma 9.48, for i ⩾ 3. The steps described below roughly follow the steps from Sec-
tion 9.6.3.1, but since we have an unbounded (possibly infinite) number of runs ρi, we cannot build
them sequentially. The key idea is to build them in parallel, relying on the fact that they all start in p. We
shall only focus on the case of Item (5)(d). One can show that other cases Items (5)(a) to (5)(c) are not be
modified when applying the functions described below.

(6) We first apply a sequential function which checks if there is a−→q # with q ∈ Q in the input, and in
this case replaces each subsequent symbol# by#−→q . After this operation, the output of Item (5)(d)
becomes αF1#F2#

−→p F3#
−→p F4 · · · , i.e. it describes the first state of each ρi for i ⩾ 3;

(7) Then we apply−−−−−→try-simul# on the whole input. The output is now αF1#F2#w3#w4 · · · where
wi has of the following shapes for all i ⩾ 3 (where βi := λ∗(−→p , ui)):
(a) either δ∗(−→p , ui) = ω and βi ∈ Bω , then βi;
(b) or δ∗(−→p , ui) = −→p (thus ρi never visits the last position of ui−1), then βiFi

−→p ;
(c) or δ∗(−→p , ui) =←−pi (thus ρi visits the last position of ui−1), then βi←−piFi .

By Lemma 9.48, Item (7)(b) describes the beginning of ρi+1, hence the state is necessarily p.
(8) Then we replace each subword−→q # with q ∈ Q by#. This enables to remove the−→p# in thewi

of Item (7)(b), since the corresponding ρi have been fully simulated.
(9) Now, our goal is to deal with the wi of Item (7)(c), which correspond to the runs ρi which are

not fully simulated. In this case, we need to compute←−−−−simul-d(Fi−1
←−pi). We first build a function

which implements an operation similar to that of Item (3).

Claim 9.56 (Behind)

Let $ be a fresh symbol. One can build a function behind in C which takes as input a
word w1#w2# · · · where each factor wi has shape either βi←−riFi, or βiFi, or βiFi

−→ri
or βi. It outputs a word where each factor wi of shape βi←−riFi for i ⩾ 2 is replaced by
βiri$Fi−1

←−ri $Fi, and the otherwi are unchanged.

Proof. We can first apply a sequential function which adds a $ symbol just before reachF .
Then we apply basic-copy with separator $, giving factors of shape:

$Fi−1(
−−→ri−1?)#βi(

←−ri ?)$Fi−1#βi(
←−ri ?)$.

where ? denotes the possibility of having or not a letter. Then we apply a sequential function
which uses the first Fi−1(

−−→ri−1?) to complete the (i−1)-th factor, then outputs βi, then
ri$Fi−1 if there is a ←−ri , ignores the next βi and ends with ←−ri . It is easy to see that this
function behaves as expected if βi orFi−1 is infinite. ◀

We thus apply the function behind from Claim 9.56 to the whole input.
(10) It remains to apply←−−−−simul-d(Fi−1

←−pi) on the appropriate factors, as we did in Item (4). For this, we
apply the function←−−−−−try-simul#. After this operation, the factors without $ are not modified, and
the factors of shape βipi$Fi−1

←−pi$Fi are transformed in (with β′
i := λ∗(←−pi , ui−1)):

(a) if δ∗(←−pi , ui−1) =
−→
p′i , then βipi$β′

iFi−1

−→
p′i$Fi;

(b) if δ∗(←−pi , ui−1) =
←−
p′i , then βipi$β′

i

←−
p′iFi−1$Fi. In this case, it means that ρi will visit ui−2.

According to Lemma 9.48, this is only possible if ui is the last factor. Here the forward
factorization forest cannot help us to control the end of ρi, but this very particular case can
occur only once in the whole process and will be treated in Item (13).

(11) Now, let us remove the $ and the useless copies of factors.

Jump to contents

9.7. DISCUSSION: PEBBLES ANDMARBLES OF INFINITEWORDS 235

Claim 9.57 (Cleaning)

One can build in C a function clean which behaves as follows:
▶ if its input does not contain $, it is not modified;
▶ if its input has shape βipi$β′

iFi−1

−→
p′i$Fi, the output is βiβ′

i

−→
p′iFi;

▶ if its input has shape βipi$β′
i

←−
p′iFi−1$Fi, it is mapped to βipiFi.

Proof. We first replace the second $ (if it exists) by a & and then apply a basic-copy with
separator&. We finally apply a sequential function which outputs what it sees until a factor
q$ with q ∈ Q. In this case it reads the next factor between $ and& (without writing) to de-
termine whether the input has the second or the third shape, and then it behaves accordingly
on the last piece. This can be done without modifying the words without $. ◀

We then apply the function clean# to our whole input. Observe that the last case of Claim 9.57,
we have undone the computation of ←−−−−simul-d(Fi−1

←−pi) and the state pi no longer has an over-
arrow. We say that this state is frozen7 so that it does not interfere with the remaining parallel
computations of the ρi. Recall from Item (10)(b) that in this case pi marks the beginning of the last
factor, which is a very rich information in a situation where ω-lookarounds are not permitted.

(12) By iterating |Q| times the previous steps, and then applying functions of C to clean the output,
one can ensure that the result is one of the following:
(a) β#F1 · · ·#Fn

−→r and in this case δ∗(−→q1 , u) = −→r and β = λ∗(−→q1 , u);
(b) β ∈ Bω and in this case β = λ∗(−→q1 , u);
(c) β#F1 · · ·#rFn where r was frozen during the computation and β is the output along

maxi-run(−→q1 , u) until it visits r in the first position of un.
(13) Finally, let us explain briefly how to deal with Item (12)(c). The key argument is that the last factor

is now marked. We first transform the #←−r into←−r $. By applying successively←−−−−−−−simul-(d+1) on
F1# · · ·#Fi−1 and

−−−−→
simul-d on Fi, as we did in Section 9.6.3.1 for a concatenation8of two for-

ward factorization forests, one can build the end of the run maxi-run(−→q1 , u).

9.6.4 Decomposing deterministic regular functions

Thanks to the results presented in Sections 9.6.1 to 9.6.3, now we are ready to conclude the proof of
Theorem 9.43. Let T = (A,B,Q, q0, F, δ, λ) be a 2DTω whose transition morphism is µ : A∗ → T,
which computes a deterministic regular function f : Aω ⇀ Bω . It follows from Lemma 9.54 that one
can build a function f ′ from the class C such that f ′(−→q0F) = f(u) whenever F ∈ f-Forests|T|µ (u) for
some u ∈ Dom(f). Thus the composition f ′ ◦ f-forestµ is an extension of f . Thanks to Theorem 9.46
and the definition of C, f ′ ◦ f-forestµ is a composition of sequential and map-copy-reverseω functions.
To remove the words which are not in the domain (which is Büchi deterministic by Proposition 9.14), it
suffices to pre-compose this function by an appropriate sequential function.

9.7 Discussion: pebbles and marbles of infinite words

The reader may ask why (deterministic) polyregular functions of infinite words have never been defined in
the literature. A first answer is that nested 2DTω (or nested infinite “for” loops) are less meaningful than

7But in Item (13) we shall “let it got, let it go”.
8Beware that here we really need to use

←−−−−−−−
simul-(d+1), and that←−−−−simul-d would not suffice. This is why

←−−−−−−−
simul-(d+1) was previ-

ously created in Lemma 9.53, and not built in our induction.

Jump to contents

236 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

nested 2DT of finite words. Indeed, in order to produce an infinite word (and not word indexed by a
more complex ordinal9), one has to ensure that any submachine only produces a finite output.

Therefore it seems more natural to define (recursive) marble transducers of infinite words, whose sub-
machines process a finite prefix of the input, thus necessarily produce a finite output. Furthermore, one
can conjecture that this model is equivalent toDSSTω without restrictions on the register copies, which
is still meaningful over infinite words, since it processes its input in a streaming fashion.

Over finite words, we have seen in Theorem 4.41 how to decide if a DSST can be transformed into
an equivalent k-layered DSST. Recall that for k = 1, it shows how to decide if a function computed by
a DSST is regular. Now, we discuss this problem over infinite words in Open question 9.58.

Open question 9.58 (DSSTω→Deterministic regular)

Given a DSSTω , can we decide if it computes a deterministic regular function?

First, we note that comparing the size of the input and the output no longer makes sense over in-
finite words. Furthermore, making exponential copies of shape r 7→ rr no longer prevents from being
deterministic regular (for instance, if this register is used to produce a unary output of shape 1ω).

Let us try to build alternative insights on this problem, by relying on a possible semantics charac-
terization. Recall that an infinite word is ultimately periodic if it has shape uvω for some u, v ∈ A+. By
adapting the techniques of Section 2.2.2, it is easy to show that if f is deterministic regular, then for all
ultimately periodic u ∈ Dom(f), f(u) is ultimately periodic. This condition is however not sufficient
to characterize the functions computed by DSSTω which are deterministic regular.

Example 9.59 (Ultimately periodic output)

The function which maps 0n1ω to 0n
2

1ω is computable by a DSSTω . Furthermore, the output
over any word is ultimately periodic, but this function is not deterministic regular.

To avoid this issue, one can formulate the following candidate for a characterization: a function
f computed by a DSSTω is deterministic regular if and only if there exists K ⩾ 0 such that for all
uvω ∈ Dom(f), f(uvω) = αβω for some |α| ⩽ K|u| and |β| ⩽ K|v|. This condition somehow
introduces uniformity in the ultimate periodicity. It is necessary, but we do not know if it is sufficient.

In the rest of Section 9.7, we discuss the case when the input alphabet is unary, i.e. it is {0}. This
restriction may seem completely dumb, since the domain is now the singleton {0ω}. We shall observe
that it is not the case, since a large variety of sequences can be obtained by iterating a substitution.

Example 9.60 (Linear blocks)

Let f : 0ω → {0, 1}ω be such that f(0ω) = 10100100010 · · · . This function can be computed
by a copyful DSSTω with a single state, registers {r, out} and updates r 7→ r 0, out 7→ out r 1.

It is easy to see that in this particular setting, f is deterministic regular if and only if f(0ω) is ulti-
mately periodic. Let us observe that our question is related to a well-known word combinatorics prob-
lem. A morphic word is an infinite word given by a tuple (B,C, c, φ, ψ) such that B and C are alpha-
bets, ψ : C∗ → C∗ and φ : C∗ → B∗ are morphisms and c ∈ C is such that ψ(c) = c u for some
u ∈ C+. Thanks to this last condition, ψn(c) := ψ ◦ · · · ◦ ψ(c) (with n compositions) converges to
some ψω(c) ∈ Cω . The morphic word is formally φ(ψω(c)) ∈ Bω when this value is infinite.

9In this case, one could imagine that a k-pebble transducer outputs a word indexed by the ordinal ωk .

Jump to contents

9.7. DISCUSSION: PEBBLES ANDMARBLES OF INFINITEWORDS 237

Proposition 9.61 (Unary input alphabet)

The following problems are effectively equivalent:

(1) given a DSSTω computing f : 0ω 7→ u, deciding whether f is deterministic regular;
(2) given a DSSTω computing f : 0ω 7→ u, deciding whether u is ultimately periodic;
(3) given a morphic word u ∈ Aω , deciding whether u is ultimately periodic.

Proof. We treat equivalence between Items (2) and (3). This result follows by observing that a
DSSTω with input alphabet {0} can always be transformed in a simple one (see Section 4.4.1). A
simpleDSSTω is (B,R, out, ι, λ)whereλ : R→ R∗ and ι : R→ B∗. Observe that the semantics
of such a machine exactly matches with the definition of a morphic word. ◀

Thanks to Theorem 9.62 from [Dur13], our problem becomes decidable over unary input alphabets.

Theorem 9.62 (Ultimate periodicity of morphic words)

One can decide if a morphic word is ultimately periodic.

On the negative side, Proposition 9.61 means that deciding deterministic regularity over arbitrary
input alphabets is at least as technical as showing Theorem 9.62, and probably much more. However,
Theorem 9.62 is already known to be a difficult result in word combinatorics, which had been open for
at least 30 years before Durand’s proof. All in all, we believe that Open question 9.58 is quite difficult,
and that it cannot be solved by using the techniques of this manuscript.

Jump to contents

238 CHAPTER 9. DETERMINISTIC REGULAR FUNCTIONS OF INFINITEWORDS

Jump to contents

Chapter 10

Determinization of continuous
rational functions

L’idée de l’avenir, grosse d’une infinité de possibles, est donc plus
féconde que l’avenir lui-même, et c’est pourquoi l’on trouve plus
de charme à l’espérance qu’à la possession, au rêve qu’à la réalité.

Henri Bergson, Essai sur les données immédiates de la conscience

We have conjectured in Chapter 8 that the class of continuous (or, equivalently, computable) regular
functions is (up to extensions) exactly the class of deterministic regular functions. The various results of
Chapter 9 tend to support this conjecture, since they show that the class of deterministic regular func-
tions is especially robust. In particular, it is closed under composition, and so is the class of continuous
regular functions, since continuity is preserved under composition.

The goal of the current chapter is to partially solve the aforementioned conjecture by showing that
a continuous rational function can effectively be extended to a deterministic regular one. This main
result is stated in Section 10.1. Given a rational function, it enables to build a deterministic machine
with bounded memory which computes it whenever it is possible (recall that continuity is known to be
decidable). As such, it can be seen as a way to synthesize a simple program from a specification.

The proof of this statement is rather complex and goes over Sections 10.2 to 10.7. A key obstacle
is that a deterministic machine cannot choose which run of a 1NTω is accepting, since final Büchi con-
ditions deal with events happening infinitely often. Therefore, a 1DTω which simulates this 1NTω has
to manipulate several runs in parallel. This intuition motivates our key definition of compatible sets of
states which are the sets of states of a 1NTω having a “common infinite future”. We show that when the
function f computed by the 1NTω is continuous, the outputs produced along finite runs which end in
a compatible set enjoy handy combinatorial properties. Finally, we leverage these properties in order to
build a deterministic regular extension of f . To the knowledge of the author, the techniques used in this
proof are completely original. This result probably is the most involved of this manuscript.

We believe that the path is still long towards generalizing this result to regular functions. In Sec-
tion 10.8, we nevertheless conjecture that the proof can be adapted to study uniform continuity of rational
functions, and to capture this subclass by a dedicated computation model.

This chapter is mainly based on [CD22].

240 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

10.1 Continuity of rational functions

In Section 10.1.1, we claim that a continuous rational function can be extended to a deterministic regular
one. We also argue that this result is tight, in the sense that even 1DTω with finite lookarounds are not
powerful enough to capture continuous rational functions. We then recall in Section 10.1.2 awell-known
decidable characterization of continuity for the functions computed by 1NTω .

10.1.1 Two-way determinization of continuous rational functions

We provide in Theorem 10.1 a partial answer to Conjecture 8.46. This result is the main statement of
Chapter 10. It was first stated in [CD22, Theorem 4.2]. Its proof is especially long and involved: it nearly
requires a whole chapter and ranges over Sections 10.2 to 10.7.

Theorem 10.1 (Rational→Deterministic regular extension)

A rational function of infinite words has an extension which is deterministic regular if and only if
it is continuous. If this property holds, one can build a 2DTω which computes an extension.

Proof sketch. The “only if” direction is obvious. Conversely, let T be a real-time unambiguous
1NTω which computes a continuous function f : Aω ⇀ Bω . The main obstacle for giving a
deterministic regular extension of f is that one cannot compute the accepting run of T in a de-
terministic fashion. Indeed, there may exist several infinite runs labelled by the same input, and the
accepting one can only be detected by using Büchi conditions.

An extension of f is built as the composition (recall from Theorem 9.39 that deterministic
regular functions are closed under composition) of three deterministic regular functions buildSteps
(Theorem 10.22), buildTrees (Theorem 10.26) and buildOutput (Theorem 10.28) where:
(1) the function buildSteps first computes an over-approximation of the accepting run of T in

terms of subsets of Q which are called compatible. Intuitively, this construction captures all
possible infinite runs labelled by the input and removes irrelevant finite runs;

(2) by leveraging the continuity hypothesis one can show that the runs which visit compatible
sets enjoy several combinatorial properties. The function buildTrees uses these properties to
build a sequence of trees (encoded as words) which describe the output of f . In these trees,
branching behaviors (which correspond to the remaining non-determinism) are only allowed
when the outputs commute. Hence this construction is another step towards determinism;

(3) finally, the function buildOutput removes the branching behaviors of the trees previously built.
It is obtained by describing aDSSTω which manipulates its registers in tree-like fashion. ◀

Example 10.2 (Doubling factors)

The total function double : {0, 1, 2}ω → {0, 1, 2}ω from Example 8.16 can be computed by a
2DTω which does a first left-to-right pass on each block 0ni (or 0ω) while outputting 0ni (or 0ω).
If it reads a 1, it outputs it and moves to the next block. If it reads a 2, it does a right-to-left pass
on 0ni , and then a last left-to-right pass while outputting 0ni again.

As a low-hanging consequence, one candecide inCorollary 10.3 if a rational function is deterministic
regular. As observed for Corollary 8.24, obtaining such a corollary is just a matter of domains.

Jump to contents

10.1. CONTINUITY OF RATIONAL FUNCTIONS 241

Corollary 10.3 (Rational→ deterministic regular)

One can decide if a rational function of infinite words is deterministic regular. If this property
holds, one can build a 2DTω which computes it.

Proof. Observe that a rational function f is (effectively) deterministic regular if and only if it can
be extended to a deterministic regular function and its domain is Büchi deterministic. Indeed, a
deterministic regular function can be restricted to any Büchi deterministic language by Proposi-
tion 9.14. We conclude thanks to Proposition 8.3 and Theorem 10.1. ◀

Recall that 1DTω are not sufficient to capture continuous rational functions, since e.g. the func-
tions replace or double are not sequential. In Section 9.1.1, we introduced the model of 1DTω with finite
lookarounds, which lies in between 2DTω and 1DTω , since it has the ability to check a property of a
finite prefix of the input. We say that a function is deterministic rational if it can be computed by such a
machine. It is easy to show that deterministic rational functions are closed under composition.

A natural question1 is whether continuous rational functions are deterministic rational. We show
in Proposition 10.4 that it is not the case2. This result means that our Theorem 10.1 is tight, i.e. that
two-way moves are absolutely unavoidable when determinizing rational functions.

Proposition 10.4 (1DTω with finite lookarounds are not sufficient)

The total function double : {0, 1, 2}ω → {0, 1, 2}ω is not deterministic rational.

Proof. Assume that the function double is computed by a 1DTω with finite lookarounds of shape
T = (A,B,Q, q0, F, δ, λ) where δ : Q × RegLang(A) → Q. Let q0 → q1 → · · · be the
accepting run of T labelled by 0ω . Let L0, L1, . . . be such that δ(qi, Li) = qi+1 for i ⩾ 0.
There exists N ⩾ 0 such that 0N has a prefix in Li for all i ⩾ 0. Thus if p0,n → p1,n → · · ·
(resp. r0 → rn1 → · · ·) is the accepting run labelled by 0n+N10ω (resp. 0n+N20ω), then pni =
rni = qi for all 0 ⩽ i ⩽ n. Hence there exist K ⩾ 0, α, β, γ, γ′, δ, δ′ ∈ {0, 1, 2}+ such that
double(0Kn+N10ω) = αβnγδω and double(0Kn+N20ω) = αβnγ′δ′

ω , a contradiction. ◀

Nevertheless, the author believes that deterministic rational functions are a robust class of functions
which is worth being studied in detail and characterized among the deterministic regular ones.

Conjecture 10.5 (Rational→Deterministic rational)

One can decide if a rational function of infinite words is deterministic rational.

10.1.2 Continuity and twinning property

The goal of Section 10.1.2 is to recall the well-known characterization of continuity for rational func-
tions in terms of twinning properties for 1NTω (Lemma 10.8). This result enables to normalize a 1NTω

computing a continuous function, which is a first easy step towards Theorem 10.1.

1The author is grateful to Lhote for asking this question.
2Intuitively, a 1DTω with finite lookarounds computing the function double may have to check that the current suffix is 0ω ,

which is not possible since this is not a property of a finite word.

Jump to contents

242 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

Let T = (A,B,Q, q0,∆, λ) be a 1NTω . If u ∈ A∗ and p, q ∈ Q, we write p u|α−−→ q to denote the
existence of a run from p to q labelled by u which outputs α ∈ B∗. If u ∈ Aω , we write p u|α−−→ ∞ for
the existence an infinite (but not necessarily final) run labelled by u which outputs α ∈ B∞.

Definition 10.6 (Trim, clean)

We say that a 1NTω is trim if any state occurs in some accepting run3. The 1NTω is said to be clean
whenever the production along any accepting run is infinite.

Observe that a trim 1NTω is clean if and only if it has no run of shape q u|ε−−→ q for some final state
q and u ∈ A+. Recall from Section 8.1.2 that rational functions are computed by unambiguous and
real-time 1NTω . It is easy to show that such a machine can always be made trim and clean.

Claim 10.7 (Trim and clean 1NTω)

Given an unambiguous and real-time 1NTω , one can build an unambiguous, real-time, clean and
trim 1NTω which computes the same function.

Proof. Given an unambiguous and real-time 1NTω T , one can build an equivalent unambiguous,
real-time and clean 1NTω . The latter consists of twodisjoint copies ofT , where accepting states are
only taken in the second copy, which is visited onlywhen producing a non-empty output. This way,
we ensure the absence of loopswith empty output in a final state. Finally, we trim thismachine. ◀

Nowwe are ready to recall the characterization of continuous functions in terms of run patterns for
1NTω (also called twinning properties). These patterns are presented in Figure 10.9 and Lemma 10.8. In
thismanuscript, we only need the “only if” direction of Lemma10.8, whose proof is easy using continuity.
The converse direction (shown e.g. in [DFKL20, Lemma 11]) was used to give tight complexity bounds
for deciding the continuity of a function computed by a 1NTω [DFKL20, Theorem 12].

Lemma 10.8 (Characterization of continuity)

Let T = (A,B,Q, I, F,∆, λ) be an unambiguous, real-time, clean and trim 1NTωwhich com-
putes a function f : Aω ⇀ Bω . Then f is continuous if and only if the following holds.

For all q1, q2 ∈ I , q′1 ∈ F , q′2 ∈ Q, u ∈ A∗, u′ ∈ A+, α1, α
′
1, α2, α

′
2 ∈ B∗ such that

qi
u|αi−−−→ q′i

u′|α′
i−−−→ q′i for i ∈ {1, 2}, we have (recall that α′

1 ̸= ε since T is clean):

▶ if α′
2 ̸= ε, then α1α

′
1
ω
= α2α

′
2
ω ;

▶ if α′
2 = ε, then for all v ∈ Aω , β ∈ Bω such that q′2

v|β−−→∞ is final, α1α
′
1
ω
= α2β.

Proof of “only if”. Let v ∈ Aω and β ∈ Bω be such that q′2
v|β−−→ is final (such a run exists since

the transducer is trim and clean). Therefore, for all n ⩾ 0 we have f(uu′nv) = α2α
′
2
n
β. On the

other hand f(uu′ω) = α1α
′ω
1 because q1 ∈ F . By continuity in uu′ω ∈ Dom(f), for all p ⩾ 0we

have |f(uu′nv)∧f(uu′ω)| ⩾ p for n large enough. The result directly follows. ◀

In particular, if α′
2 = ε, then for any final run q′2

v|β−−→ ∞ we have β = α−1
2 α1α

′
1
ω , i.e. the output

along this run does not depend on v. Using this observation, we show in Claim 10.11 how to ensure that
the case α′

2 = ε never occurs. Avoiding such loops with empty output will be useful in Section 10.5.3,
in order to ensure that all infinite runs (even the non-accepting ones) produce an infinite outputs.

3Equivalently, there exist both a (finite) initial run which ends in this state and an (infinite) final which starts in it.

Jump to contents

10.2. OVERALL DESCRIPTION OF THE DETERMINIZATION PROCESS 243

q1

q2

q′1

q′2

u′ ̸= ε|α′
1 ̸= ε

u′ ̸= ε|α′
2

u|α1

u|α2 v|β

Figure 10.9: Twinning property described in Lemma 10.8.

Definition 10.10 (Parallel productivity)

We say that a 1NTω is parallel productive if the hypotheses of Lemma 10.8 imply α′
2 ̸= ε.

Claim 10.11 (Parallel productive 1NTω)

Given an unambiguous, real-time, trim and clean 1NTω computing a continuous function, one
can build an unambiguous, real-time, trim, clean and parallel productive 1NTω computing it.

Proof idea. Let T := (A,B,Q, I, F,∆, λ) be such a 1NTωcomputing a continuous function.
We say that q′2 ∈ Q∖F is constant if the conditions of Lemma10.8 hold andα′

2 = ε. One candecide
if a state q ∈ Q is constant (by using a pumping argument, one can enforce |u|, |u′| ⩽ |Q||Q| in
Lemma 10.8) and in this case one can effectively computeαq ∈ B∗, α′

q ∈ B+ such that for all final
run q v|β−−→ ∞, β = αqα

′
q
ω (as observed right before Definition 10.10). For all such constant state

q ∈ Q, one can build an unambiguous, clean and parallel productive 1NTω Tq which computes
the constant partial function v 7→ αqα

′
q , with domain {v | v labels a final run of T starting in q}.

Finally, we replace each constant state q of T by a disjoint copy of Tq (i.e. we remove q and send
all ingoing transitions to the initial states of Tq). We finally trim this machine. ◀

We say that a 1NTωis productive if for all q ∈ Q and u ∈ A+, if q u|α−−→ q then α ̸= ε. As observed
in Claim 10.12, it is not possible to ensure that a 1NTω computing a continuous function is product-
ive. Therefore Claim 10.11 is the best simplification we can get. We conjecture in Section 10.8 that
productivity can be reached in the setting of uniformly continuous rational functions.

Claim 10.12 (Non-productivity)

The sequential function remove : {a, b, c}ω ⇀ {b, c}ω is not computable by a productive 1NTω .

Proof idea. Assume that remove is computed by a productive 1NTω . By relying on classical pump-
ing arguments, one can show the existence of n ⩾ 1, α ∈ B+, β, γ ∈ Bω , such that bω =
f(anbω) = αβ and cω = f(ancω) = αγ. This yields a contradiction. ◀

10.2 Overall description of the determinization process

In the rest of Chapter 10, T = (A,B,Q, I, F,∆, λ) denotes an unambiguous, real-time, clean, trim,
and parallel productive 1NTω which computes a continuous function f : Aω ⇀ Bω . The goal of Sec-
tion 10.2 is to describe the main steps of the construction of a deterministic regular function which

Jump to contents

244 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

extends f , which proves Theorem 10.1. The structure of proof presented in this manuscript substan-
tially differs from the original proof of [CD22], even if the underlying ideas are the same. The author
believes that the current presentation is more modular and easier to follow4.

Formally, we shall build three deterministic regular functions buildSteps (Theorem 10.22), buildTrees
(Theorem10.26), buildOutput (Theorem10.28) such that buildOutput◦buildTrees◦buildSteps : Aω ⇀ Bω

is an extension of the function f computed byT . This function is deterministic regular as a composition
of deterministic regular functions (Theorem 9.39), which concludes the proof of Theorem 10.1. The
three aforementioned functions intend to capture distinct difficulties of the construction.

10.2.1 Computing compatible sets

The goal of this section is to state Theorem 10.22, which builds the function buildSteps for computing
an over-approximation of the accepting run of T in terms of compatible sets. Informally, they are sets
of states fromQ which have a “common infinite future” and such that one of the future runs is final, as
depicted in Figure 10.14a. In terms of computability, they capture a form of non-determinism which
cannot be solved by a deterministic machine, even when finite lookarounds are allowed.

Definition 10.13 (Compatible set)

We say that a subset C ⊆ Q is compatible whenever there exists v ∈ Aω such that for all q ∈ C ,
there exists an infinite run ρq labelled by v for which the following holds:

▶ for all q ∈ C , ρq starts in state q;
▶ there exists q ∈ C such that ρq is final.

q1

q2

q3

C

v|β1 final

v|β2

v|β3

(a) A compatible setC .

q′1

q′2

q′3

S

q1

q2

q3

T

u|α1

u|α2

u|α3

(b) A pre-step S, u, T .

q′1

q′2

S

q1

q2

q3

T

u|α1

u|α2

u|α3

(c) A step S, u, T .

Figure 10.14: Compatible sets, pre-steps and steps.

Observe that singletons are always compatible sets since the 1NTω is trim. However, a subset of a
compatible set has no reason to be compatible itself (we may have lost the accepting run).

Example 10.15 (Compatible sets)

In the 1NTω of Figure 8.17b, the compatible sets are the singletons, {q0, q1} and {q0, q2}. How-
ever {q1, q2} is not compatible. In Figure 8.17c, all pairs of states are compatible.

We denote by Comp (resp. Comp(S)) the set of compatible sets of states of T (resp. the set of com-
patible sets of which are included in a given S ⊆ Q). By using the pigeonhole principle, one can easily

4Due to the fact that neither closure under composition of deterministic regular functions (Theorem 9.39) nor finite
lookarounds removal (Theorem 9.4) for 2DTω were known at the publication of [CD22], the original proof is not divided in
three distinct steps like the current one. Hence its various constructions are entangled and less easy to understand.

Jump to contents

10.2. OVERALL DESCRIPTION OF THE DETERMINIZATION PROCESS 245

characterize compatible sets in terms of loops, as detailed in Claim 10.16. As a direct consequence, one
can effectively determine if someC ⊆ Q is compatible or not.

Claim 10.16 (Characterization of compatible sets)

The set C ⊆ Q is compatible if and only if there exists a function d : C → Q, and words
u, u′ ∈ A∗ such that the following holds:

▶ for all q ∈ C , q u−→ d(q) u′
−→ d(q);

▶ there exists q ∈ C such that d(q) ∈ F ,
▶ u′ ̸= ε and |u|, |u′| ⩽ |Q||Q|.

Now let us introduce the notions of pre-step and step, which describe how one can move from a
compatible set to another by reading letters. This intuition is depicted in Figures 10.14b and 10.14c.

Definition 10.17 (Pre-step, step)

Given C,D ∈ Comp, we say that C, u,D is a pre-step if u ∈ A∗ and for all q ∈ D, there is a
unique state ofC denoted preduC,D(q), such that preduC,D(q) u−→ q.

We say thatC, u,D is a step if it is a pre-step and the function preduC,D : C → D is surjective.

Given q ∈ D, let produC,D(q) be the output α ∈ B∗ produced along the run preduC,D(q) u|α−−→ q. We
shall mainly be interested in pre-steps or steps of shape J, u, C where J ⊆ I and J,C ∈ Comp, which
are called initial. Indeed, they describe the execution of several initial runs of T .

Example 10.18 (Pre-steps, steps)

In Figure 8.17b, the initial steps are {q0}, u, {qi} for some i ∈ {0, 1, 2}. In Figure 8.17c, observe
that {q0}, 0n, {q1, q2} is also a step for all n ⩾ 0.

We observe in Claim 10.19 that initial pre-steps naturally emerge in the proofs, due to the unambi-
guity of T . If u ∈ A∗ and S ⊆ Q, we define u▷S := {q | p u−→ q for some p ∈ S}.

Claim 10.19 (Construction of pre-steps)

Letu, v ∈ A∗ andC,D ∈ Comp be such thatC ⊆ v▷I andD ⊆ u▷C , thenC, u,D is a pre-step.

Proof idea. Uniqueness follows from the fact that T is trim and unambiguous. ◀

Nowwe justify in Lemma 10.20why the study of compatible sets is especially relevant in our setting.
This result originates from [CD22, Lemma 4.8] and shows that the initial runs labelled by some u ∈ A∗

which end in a compatible set produce the same output, up to taking prefixes. Formally, we say that
words u1, . . . , un are mutual prefixes if for all 1 ⩽ i, j ⩽ n, either ui ⊑ uj or uj ⊑ ui holds.

Lemma 10.20 (Mutual prefixes)

Let J, u, C be an initial pre-step, then the produJ,C(q) for q ∈ C are mutual prefixes.

Proof. We first show a stronger result that will be re-used in Section 10.4. Claim 10.21 provides
an equation which is verified by the outputs of initial runs ending in a compatible set. The proof of
this result crucially relies on the continuity of the function f computed by T .

Jump to contents

246 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

Claim 10.21 (Ends)

For all C ∈ Comp, there exists a function endC : C → Bω such that for all5 initial pre-step
J, u, C and p, q ∈ C , we have produJ,C(p)endC(p) = produJ,C(q)endC(q).

Proof. SinceC is compatible, we get byClaim10.16words v ∈ A∗, v′ ∈ A+ andd : C → Q
such that for all q ∈ C , q v|α(q)−−−−→ d(q) v′|α′(q)−−−−−→ d(q) with α(q), α′(q) ∈ B∗. Since T is
clean and parallel productive and d(p) is final for some p ∈ C , then α′(q) ̸= ε for all q ∈ C .
We define endC(q) := α(q)α′(q)

ω ∈ Bω and the result follows from Lemma 10.8. ◀

Lemma 10.20 directly follows from Claim 10.21. ◀

Now we are ready to state Theorem 10.22, which builds a deterministic regular function for com-
puting an over-approximation of the accepting run of T in terms of compatible sets. In other words,
this result only keeps initial runs whose outputs are prefixes of each other. It is therefore a first step
towards computing f by a deterministic regular function since it removes several irrelevant behaviors.
Theorem 10.22 originates from6 [CD22, Lemma 4.16]. Its proof is detailed in Section 10.3.

Theorem 10.22 (Computing pre-steps)

One can build a deterministic regular function7 buildSteps : Aω ⇀ (A ⊎ Comp)ω such that for
all u ∈ Dom(f), buildSteps(u) is defined and has shape S0u[1]S1u[2]S2 · · · where:

▶ S0 ⊆ I and for all i ⩾ 0, Si, u[i+1], Si+1 is a pre-step;
▶ for all i ⩾ 0, qi ∈ Si, where q0 u[1]−−→ q1

u[2]−−→ · · · is the accepting run of T labelled by u.

Proof sketch. If one performs a classical subset construction on T , there is unfortunately no
reasonwhy the current set of states should be compatible. Themain idea is to compute the function
buildSteps by a 1DTω with finite lookarounds which performs an improved subset construction. At
each stage, themachine uses the finite lookarounds to determine a subset of the current set of states
which is compatible and contains the current state of the accepting run of T . ◀

Remark 10.23 (Relation with the results of [FW21])

It is known since [FW21, Corollary 13] that one can build a 2DTω which computes f wheneverT
verifies a specific structural property called (P). Formally, (P) asks that for all p, q, q′ ∈ Q and
u ∈ A∗, if p u|α−−→ q and p u|α′

−−−→ q′ with α ⊑ α′, then q = q′. Observe that if (P) holds, then
initial steps are necessarily of shape {p}, u, {q} and thus Si is a singleton for all i ⩾ 0. In this
very restricted case, we immediately recover the result of [FW21] with Theorem 10.22: indeed,
since the Si are singletons, they describe a single run which is the accepting one (and it is trivial
to produce its output). The main difficulties for proving Theorem 10.1 in general arise from the
fact that the Si may not be singletons. We cope with this obstacle in the next sections.

10.2.2 Computing trees

Wehave built in Theorem 10.22 an over-approximation buildSteps(u) of the accepting run ofT labelled
by u ∈ Dom(f) in terms of compatible sets. The runs described by buildSteps(u) still contains a form

5Observe that the function endC does not depend on the initial pre-step chosen.
6The formulation of this original result is in fact (needlessly) more complex.
7We shall in fact build a deterministic rational function (but this precise statement is not useful in our proof).

Jump to contents

10.2. OVERALL DESCRIPTION OF THE DETERMINIZATION PROCESS 247

of non-determinism, but the latter is restricted to the case when the outputs are mutual prefixes by
Lemma 10.20. The goal of Section 10.2.2 is to show Theorem 10.28 which goes one step further: non-
determinism is only allowed when all the outputs belong to θ∗ for some θ ∈ B∗ (i.e. they commute).

This construction is achieved by forgetting about the runs ofT and building an intermediate model
of tree sequences. We shall re-use the classical notions of depth (the root having depth 1), ancestor, des-
cendant, etc. in a tree. We define the width of a (finite or infinite) tree as the (finite or infinite) maximal
number of nodes of a given depth. A deepest leaf of a finite tree is defined as a leaf of maximal depth.

Definition 10.24 (θ-tree)

Let θ ∈ B∗. A θ-tree is a tree of width bounded by 2|Q|, whose nodes are labelled by either ε or θ.

We say that a finite non-empty tree with node labels inB∗ is pointy if it has a single deepest leaf. We
let the value of such a tree be the concatenation of the node labels along the (unique) branch which goes
from the root to this deepest leaf. In particular, the value of a finite pointy θ-tree has shape θm for some
m ⩾ 0. An example of pointy θ-tree is depicted horizontally8 in Figure 10.25.

θ

θ

ε

θ

ε

ε

θ

ε

θ

ε

θ

θ

θ

θ

ε

θ

ε

θ

θ θ

Figure 10.25: A pointy θ-tree of value θ6 (vertical slices are dashed).

We say that an infinite tree with node labels in B∗ is fertile if the concatenation of the node labels
along any infinite branch which starts in the root is an infinite word. This word is said to be the value of
the tree if it is the same along all branches. In particular, the value of an infinite fertile θ-tree is θω .

Let us fixM := max(4,maxq,q′∈Q,a∈A|λ(q, a, q′)|) and Ω :=M |Q||Q|.
For |θ| ⩽ Ω!, it is easy to see that a (finite or infinite) θ-tree can be encoded as a (finite or infinite)

word over some alphabet Slices. Indeed, since the tree has bounded width, the idea is to make the letters
of Slices describe all possible vertical slices, i.e. the labels of nodes which have the same depth, together
with the according parent relationship (see the dashed slices in Figure 10.25). Fromnowon, we therefore
identify finite (resp. infinite) θ-trees for |θ| ⩽ Ω! with words of Slices∗ (resp. Slicesω).

Now we are ready to state Theorem 10.26, which shows how to leverage buildSteps(u) in order to
abstract the runs of T as a (finite or infinite) sequence buildTrees(buildSteps(u)) of (finite or infinite)
θ-trees for various |θ| ⩽ Ω!. A θ-tree can roughly be understood as a form of non-deterministic com-
putation where all outputs belong to θ∗. We use a fresh symbol# as a separator between the elements
of a sequence. The proof of Theorem 10.26 is presented in Sections 10.5 and 10.6 and it crucially relies
on the properties of compatible sets which are presented in Section 10.4.

Theorem 10.26 (Computing θ-trees)

One can build a deterministic regular function9 buildTrees : (A ⊎ Comp)ω ⇀ (Slices ⊎ {#})ω
such that for all u ∈ Dom(f), buildTrees(buildSteps(u)) is:

8Since θ-trees are meant to abstract computations of T , we shall represent them in a horizontal fashion.

Jump to contents

248 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

▶ either an infinite sequence t1#t2# · · · where:
▶ for all i ⩾ 1 ti is a finite pointy θi-tree of value θmi

i with |θi| ⩽ Ω!;
▶ θm1

1 θm2
2 · · · = f(u);

▶ or a finite sequence t1#t2# · · ·#tn#t where:
▶ for all 1 ⩽ i ⩽ n, ti is a finite pointy θi-tree of value θmi with |θi| ⩽ Ω!;
▶ t is an infinite fertile θ-tree (of value θω) with |θ| ⩽ Ω!;
▶ θm1

1 · · · θmn
n θω = f(u).

Proof sketch. Given initial runs which end in a compatible set, recall from Lemma 10.20 that
their outputs are mutual prefixes. We prove a stronger result in Section 10.4 (Lemma 10.36):
▶ either the difference of lengths between these various outputs is “small”;
▶ or the difference of lengths is “big”, in which case the ends of these outputs have to be prefixes

of θω for some θ ∈ B∗ with |θ| = Ω! (i.e. they commute).
In the first case, the greatest common prefix of these outputs can roughly be produced, and the
bounded remainders can be stored in buffers. In the second case, we shall produce a θ-tree which
describes the various runs of T . The detailed construction is rather technical. ◀

An example of buildTrees(buildSteps(u)) is depicted in Figure 10.27 when f(u) = θ1θ2θ2θ3 · · · .
Recall that the vertical slices are encoded by the letters of Slices ⊎ {#}.

Pointy
θ1-tree

Pointy
θ2-tree

θ3-tree

θ1 # θ2

θ2

ε

θ2

ε

ε

θ2

θ2 # ε θ3

θ3

θ3

ε

θ3

Figure 10.27: A possible value of buildTrees(buildSteps(u)) when f(u) = θ1θ2θ2θ3 · · · .

10.2.3 Computing the output

Thanks to Theorem 10.26, we obtain a sequence of trees buildTrees(buildSteps(u)) which describes the
output f(u) whenever u ∈ Dom(f). In these trees, branching is only allowed when the outputs belong
to θ∗ for some θ ∈ B∗. We finally explain in Theorem 10.28 how a deterministic regular function
buildOutput can produce f(u)when given buildTrees(buildSteps(u)) as input. The detailed proof of this
result is given in Section 10.7 which relies on the construction of a 1-bounded DSSTω .

Theorem 10.28 (Computing the output)

One can build a deterministic regular function10 buildOutput : (Slices ∪ {#})ω ⇀ Bω such that
for all u ∈ Aω , buildOutput(buildTrees(buildSteps(u))) = f(u).

9We shall in fact build a deterministic rational function (but this precise statement is not useful in our proof).
10This function is deterministic regular but has no reason to be deterministic rational, contrary to what happened in the con-

structions of Theorems 10.22 and 10.26.

Jump to contents

10.3. COMPUTING COMPATIBLE SETS 249

Proof sketch. Webuild a 1-boundedDSSTω (recall fromTheorem 9.13 that such amachine com-
putes a deterministic regular function) which computes such a function buildOutput. Indeed, re-
gisters offer a flexible way to manipulate the outputs produced along branches of θ-trees.

The main difficulty of the construction is that the DSSTω cannot know11 if the θ-tree that it is
currently reading is finite (and thus pointy) or infinite. Thus, it has to ensure at the same time that:
▶ if the current θ-tree is infinite, then the output produced when reading this tree is θω ;
▶ it can recompute the concatenation of the node labels along any branch of the tree starting in

the root. Indeed, if the current θ-tree is finite, the DSSTω has to output exactly its value.
In order to ensure these two properties simultaneously, we devise an original algorithm which
manipulates various registers of the DSSTω to encode portions of the output. ◀

Sections 10.3 to 10.7 are devoted to the detailed proofs of Theorems 10.22, 10.26 and 10.28.

10.3 Computing compatible sets

The goal of this section is to show Theorem 10.22. Given an input word u ∈ Dom(f), we explain
how a deterministic regular function called buildSteps can compute a sequence of pre-steps which over-
approximates the accepting run of T labelled by u. For this purpose, we shall build a 1DTω with finite
lookarounds (recall from Theorem 9.4 that such a machine computes a deterministic regular function).

We first show in Claim 10.30 that using a compatible set is sufficient to describe all the runs which
start in a given set and are labelled by a given infinite word. This situation is depicted in Figure 10.29.
Recall that if u ∈ A∗ and S ⊆ Q, we have defined u▷S := {q | p u−→ q for some p ∈ S}.

q

C

S u▷S = u▷C

u[1:i] u[i+1:] final

Figure 10.29: Covering the future with a compatible set.

Claim 10.30 (Compatible sets cover the future)

Let S ⊆ Q and u ∈ Aω be such that there exists a final run q u−→ ∞ for some q ∈ S. There exist
C ∈ Comp(S) and i ⩾ 0 such that u[1:i]▷S = u[1:i]▷C (and therefore q ∈ C).

Proof. Assume by contradiction that the property does not hold. LetP be the set of subsetsC ⊆ S
such that q ∈ C , and such that for all p ∈ C there exists an infinite run p u−→ ∞ (not necessarily
final). Observe that P ⊆ Comp(S) and that {q} ∈ P , thus P ̸= ∅.

Now consider a set C ∈ P such that |C| = maxC′∈P |C ′|. Since C ∈ Comp(S), then by
assumption for all i ⩾ 0 we have u[1:i]▷C ̸= u[1:i]▷S, thus u[1:i]▷(S ∖ C) ̸= ∅ (because
u[1:i]▷S = (u[1:i]▷C) ∪ (u[1:i]▷(S ∖ C))). Hence the tree of all runs starting from S ∖ C and
labelled by u is infinite, thus by König’s lemma it has an infinite branch, i.e. there exists a state
p ∈ S ∖ C such that p u−→∞. ThusC ⊎ {p} ∈ P , which contradicts the maximality of |C|. ◀

11Observe that even if finite lookarounds were allowed, it would not be possible to determine this information.

Jump to contents

250 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

Nowwe are ready to describe a 1DTω with finite lookarounds which computes the desired function
buildSteps. The main idea is to perform an one-the-fly subset construction, using finite lookaheads and
Claim 10.30 to remove useless states and ensure that the current set is compatible.

Let us describe how the 1DTω with finite lookarounds is able to produce S0u[1]S1 · · ·u[i]Si when
reading u[1:i], for all i ⩾ 0. For i = 0, by Claim 10.30 there exist C ∈ Comp(I) and i′ ⩾ 0 such that
u[1:i′]▷I = u[1:i′]▷C . The 1DTω uses its finite lookarounds (one for each candidateC ∈ Comp(I)) to
determine some C such that this property holds for the smallest possible i′ ⩾ 0. It lets S0 be this set.
We have q0 ∈ S0. Now for i ⩾ 1, assume that Si−1 has been computed and let S := u[i]▷Si−1. By
Claim 10.30 there exist C ∈ Comp(S) and i′ ⩾ i such that u[i:i′]▷S = u[1:i′]▷C . As before, finite
lookarounds can be used to determine some Si ∈ Comp(S) which verifies this property. Furthermore,
Si−1, u[i], Si is a pre-step since by induction Si−1 ⊆ u[1:i−1]▷I and T is unambiguous.

10.4 Properties of compatible sets

The goal of Section 10.4 is to describe several properties of compatible sets of states (Definition 10.13)
whichwill be useful for the proof ofTheorem10.26 in Sections 10.5 and 10.6. In particular, Lemma10.36
shows that some productions are prefixes of θω and it is thus the key result for building θ-trees.

10.4.1 Common part and advances

Recall from Lemma 10.20 that the productions of initial runs which end in a compatible set are mutual
prefixes. In Section 10.4.1, we therefore introduce several notations to describe how the produJ,C(q) are
related when J, u, C is a pre-step. Recall that if the words α, β are mutual prefixes, then α∧β (resp.
α∨β) denotes the shortest (resp. the longest) word between α and β.

Definition 10.31 (Common part and advances)

Let J, u, C be an initial pre-step, we define:

▶ the common part comu
J,C ∈ B∗ as the longest common prefix

∧
q∈CproduJ,C(q);

▶ for all q ∈ C , its advance advuJ,C(q) ∈ B∗ as (comu
J,C)

−1produJ,C(q);
▶ the maximal advance advmu

J,C as the longest advance, i.e.
∨

q∈CadvuJ,C(q).

Observe that produJ,C(q) = comu
J,CadvuJ,C(q) for all q ∈ C . Furthermore, there exists p, q ∈ C

such that produJ,C(p) = comu
J,C and advuJ,C(q) = advmu

J,C by definition of the longest common prefix.

Example 10.32 (Common part and avances)

In Figure 8.17c, we get com0n

{q0},{q1,q2} = 0n, adv0
n

{q0},{q1,q2}(q1) = ε, adv0
n

{q0},{q1,q2}(q2) = 0n.

Remark 10.33 (Common part is not regular)

The reader may believe12 from Example 10.32 that given J,C ∈ Comp, then u ∈ A∗ 7→ comu
J,C

(whenever J, u, C is a step) is always a sequential function of finite words. However, this function
may not even be regular. Let us justify informally this statement by considering a 1NTω with two
possible runs: one performs transitions a|1, b|ε and the other performs a|ε, b|1. After reading
u ∈ {a, b}∗, the common part of these runs is 1min(|u|a,|u|b) which is not a regular function.

12The reader is grateful to Lhote and Passemard for this observation.

Jump to contents

10.4. PROPERTIES OF COMPATIBLE SETS 251

10.4.2 Separable compatible sets

The goal of Section 10.4.2 is to state Lemma10.36, which claims thatwhen the advances are not bounded,
they must have a periodic structure. Let us introduce the notion of separable set. Intuitively, a compatible
set S ⊆ Q is separable if there exists a way to reach S by doing an initial step whose maximal advance
is long enough. Recall thatM := max(4,maxq,q′∈Q,a∈A|λ(q, a, q′)|) and Ω :=M |Q||Q|.

Definition 10.34 (Separable set)

We say that a set C ⊆ Q is separable if there exists an initial step J, u, C and p, q ∈ C such that∣∣∣|advuJ,C(p)| − |advuJ,C(q)|
∣∣∣ > Ω (or equivalently, |advmu

J,C | > Ω).

It is easy to characterize separable sets in terms of loops, as explained in Claim 10.35. As a direct
consequence, one can effectively determine if some C ⊆ Q is separable or not. This result also shows
that one can build initial steps with arbitrarily large maximal advances.

Claim 10.35 (Characterization of separable sets)

A set S ∈ Comp is separable if and only if there exists two functions i : S → I and ℓ : S → Q,
u, u′, u′′ ∈ A∗ and three functions α, α′, α′′ : S → B∗ such that:

▶ for all q ∈ S, i(q) u|α(q)−−−−→ ℓ(q) u′|α′(q)−−−−−→ ℓ(q) u′′|α′′(q)−−−−−−→ q;
▶ u′ ̸= ε and |u|, |u′|, |u′′| ⩽ |Q||Q|;
▶ there exists p, q ∈ S such that 0 ⩽ |α′(q)| < |α′(p)| ⩽ Ω.

Proof. If the conditions holds, then for all n ⩾ 0, i(S), u(u′)nu′′, S is a step by Claim 10.19.
Furthermore, the maximal advance of this step can be made arbitrarily large when n→∞, thus in
particular the compatible set S is separable. Conversely, let J, v, S be a step and p, q ∈ S be such
that ||prodvJ,S(p)|−|prodvJ,S(q)|| > Ω. Suppose by symmetry that |prodvJ,S(p)| > |prodvJ,S(q)|+Ω.
Thus |v| > Ω/M = |Q||Q|. By the pigeonhole principle and since |S| ⩽ |Q|, we can factor
v = uu′u′′ with 0 < |u′| ⩽ |Q||Q| such that i(r) u|α(r)−−−−→ ℓ(r) u′|α′(r)−−−−−→ ℓ(r) u′′|α′′(r)−−−−−−→ r for all
r ∈ Q. Observe that 0 ⩽ |α′(p)|, |α′(q)| ⩽ M |Q||Q| = Ω. Now, if |α′(p)| = |α′(q)|, we can
remove the loop and get the result by induction since |uu′′| < |v| and we preserve |α(p)α′′(p)| >
|α(q)α′′(q)|+Ω. Otherwise |α′(p)| ≠ |α′(q)| (thus |α′(q)| < |α′(p)| up to permutation) and we
enforce |u|, |u′′| ⩽ |Q||Q| by using once more the pigeonhole principle. ◀

Now we claim that the productions along an initial step which ends in a separable and compatible
set necessarily “repeat” some output word θ ∈ B+ when the step is pursued, as depicted in Figure 10.37.
Lemma 10.36 is a therefore a key ingredient for showing Theorem 10.26 in Sections 10.5 and 10.6. This
result originates from [CD22, Lemma 4.13].

Lemma 10.36 (Looping futures)

LetC ∈ Comp be separable and J, u, C be an initial step (not necessarily the one which makesC
separable). There exists τ, θ ∈ B∗ with |τ | ⩽ Ω! and |θ| = Ω!, which can be uniquely determined
fromC and advuJ,C(p) for p ∈ C , such that for all stepC, v,D and q ∈ D:

advuJ,C(p)prodvC,D(q) ⊑ τθω for p := predvC,D(q).

Proof. The result follows from the stronger Lemma 10.39. ◀

Jump to contents

252 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

p q

J ⊆ I C D

u|comu
J,CadvuJ,C(p) v|prodvC,D(q)

Figure 10.37: Situation of Lemma 10.36 with advuJ,C(p)prodvC,D(q) ⊑ τθω .

SinceC, ε, C is always a step, in particular we have advuJ,C(p) ⊑ advmu
J,C ⊑ τθω for all p ∈ C .

Example 10.38 (Looping futures)

In Figure 8.17c, the set C := {q1, q2} is separable. For all step C, v,D we haveD = C , v = 0n,
prod0

n

C,D(q1) = 0n and prod0
n

C,D(q2) = 02n. Both are prefixes of 0ω .

10.4.3 Looping futures in separable sets

Thegoal of this section is to showLemma10.39. We shall in fact showa stronger resultwithLemma10.39.

Lemma 10.39 (Looping futures - strong version)

LetC ∈ Comp be separable and J, u, C be an initial step (not necessarily the one which makesC
separable). For all stepC, v,D and for all state z ∈ D with z := predvC,D(z), we have:

advuJ,C(z)prodvC,D(z)endD(z) = τθω

for some τ and θ which only depend onC and on the advuJ,C(t) for t ∈ C .

Now we show Lemma 10.39. Since C is separable, we get i : C → I , ℓ : C → Q, w,w′, w′′ ∈ A∗,
three functions α, α′, α′′ : C → B∗ and p, q ∈ C which verify the conditions of Claim 10.35. Recall
that we have |α′(q)| < |α′(p)| ⩽ Ω. Since i(C), ww′nw′′, C is a step for alln ⩾ 0 by Claim 10.19, then
by Lemma 10.20 the prodww′nw′′

i(C),C are mutual prefixes. Now, we show in Claim 10.40 that the difference
of output between p and q necessarily has a looping behavior for n large enough.

Claim 10.41 (Differences are looping)

There exists β, θ ∈ B∗ and P,N ⩾ 0, such that |β| ⩽ Ω, |θ| = Ω!, and for all n ⩾ P :

βθn−P ⊑
Ä
prodww′nNw′′

i(C),C (q)
ä−1

prodww′nNw′′

i(C),C (p). (10.41)

Furthermore, the values β and θ can effectively be computed and only depend onC .

Proof. Since |α′(p)| > |α′(q)|, we can define for n large enough:

πn :=
Ä
prodww′nw′′

i(C),C (q)
ä−1

prodww′nw′′

i(C),C (p) = α(p)α′(p)nα′′(p)[tn:]

Jump to contents

10.4. PROPERTIES OF COMPATIBLE SETS 253

where tn := |α(q)| + n|α′(q)| + |α′′(q)|. We assume that |α′(q)| > 0 (the case |α′(q)| = 0 is
somehow simpler since then tn is constant). For n large enough, consider:

πn|α′(p)| =
Ä
α(p)α′(p)n|α

′(p)|α′′(p)
ä
[tn|α′(p)| :]

=
Ä
α′(p)n(|α

′(p)|−|α′(q)|)+Kα′′(p)
ä
[t :]

where t is (constant and) defined below andK is chosen in a way which ensures t ⩾ 0:

t := tn|α′(p)|−n|α′(p)||α′(q)|+K|α′(p)| − |α(p)|
= |α(q)|+ |α′′(q)| − |α(p)|+K|α′(p)|.

We let θ := α′(p)Ω!/|α
′(p)| (thus we get |θ| = Ω!), β as a suffix of α′(p) which depends on t,

N := Ω!/(|α′(p)| − |α′(q)|) = |α′(p)| Ω!

|α′(p)|(|α′(p)| − |α′(q)|)︸ ︷︷ ︸
integer

and P accordingly. ◀

From this result, now we deduce that the possible future steps have a looping behavior.

Claim 10.42 (Futures are looping)

For all stepC, v,D and all r ∈ D, if r := predvC,D(r), we have:

prodvC,D(r)endD(r) = (advww′′

i(C),C(r))
−1(advww′′

i(C),C(q))βθ
ω.

Proof. Letp, q ∈ D be such that predvC,D(p) = p and predvC,D(q) = q. It follows fromClaim10.19
that i(C), ww′nw′′v,D is an initial step for all n ⩾ 0, thus by Claim 10.21:

prodvC,D(q)endD(q) =
Ä
prodww′nw′′

i(C),C (q)
ä−1

prodww′nw′′

i(C),C (p)prodvC,D(p)endD(p).

Forn large enough, Claim10.40 showsβθn−P ⊑
Ä
prodww′nNw′′

i(C),C (q)
ä−1

prodww′nNw′′

i(C),C (p). There-
fore βθn−M ⊑ prodvC,D(q)endD(q). Hence prodvC,D(q)endD(q) = βθω . Finally, by applying
Claim 10.21 once more to the initial step i(C), ww′′v,D, we get:

prodvC,D(r)endD(r) = (advww′′

i(C),C(r))
−1advww′′

i(C),C(q) prodvC,D(q)endD(q)︸ ︷︷ ︸
=βθω

. ◀

Now, let us consider what happens with the step J, u, C . Let r ∈ C (resp. s ∈ C) be such that
advuJ,C(r) = ε (resp. advuJ,C(s) = advmu

J,C), i.e. the run ending in r (resp. in s) has the shortest (resp.
the longest) production. Observe that one may have r = s.

LetC, v,D be a step and s ∈ D (resp. r) be such that s = predvC,D(s) (resp. r = predvC,D(r)). Note
that such a step always exists (at least the empty oneC, ε, C), and furthermore:

advmu
J,CprodvC,D(s)endD(s) = advuJ,C(s)prodvC,D(s)endD(s) by choice of s;

= advuJ,C(r)prodvC,D(r)endD(r) by Claim 10.21 for J, uv,D;

= ε prodvC,D(r)endD(r) by choice of r;

= (advww′′

i(C),C(r))
−1(advww′′

i(C),C(q))βθ
ω by Claim 10.42.

Jump to contents

254 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

Let m := |advww′′

i(C),C(q)| − |advww′′

i(C),C(r)| + |β|, then −2Ω ⩽ m ⩽ 3Ω (indeed |β| ⩽ Ω, and
furthermore |advww′′

i(C),C(q)| ⩽ 2Ω and |advww′′

i(C),C(r)| ⩽ 2Ω because |ww′′| ⩽ 2|Q||Q|). Now, recall
that |θ| = Ω! and observe that Ω! ⩾ 3Ω because Ω ⩾ 4 (indeed, Ω = M |Q||Q| andM ⩾ 4). We build
the value τ ∈ B∗ depending on the sign ofm:

▶ ifm ⩾ 0, we let τ := (advww′′

i(C),C(r))
−1(advww′′

i(C),C(q))β;
▶ ifm < 0, we let τ := (advww′′

i(C),C(r))
−1(advww′′

i(C),C(q))βθ.

Note that |τ | ⩽ Ω! and that this value it only depends on the step J,ww′w′′, C (as it is the case of β)
and on the advuJ,C(t) for t ∈ C (this information is needed to determine r), but not on the “future” step
C, v,D that we have selected. Hence, for all stepC, v,D we have:

advmu
J,CprodvC,D(s)endD(s) = τθω.

Finally, for all z ∈ D with z := predvC,D(z), we conclude the proof of Lemma 10.39 follows:

advuJ,C(z)prodvC,D(z)endD(z) = advuJ,C(s)prodvC,D(s)endD(s) by Claim 10.21 for J, uv,D;

= advmu
J,CprodvC,D(s)endD(s) by choice of s;

= τθω.

10.5 Computing (τ, θ)-trees from compatible sets

The goal of Section 10.5 is to show a first half of Theorem 10.26. More precisely, we show how to
transform a sequence of pre-steps which over-approximates the accepting run of T into a sequence of
(τ, θ)-trees which verifies the conditions of Proposition 10.44. Informally, (τ, θ)-trees can be seen as
relaxed versions of θ-trees. We shall explain in Section 10.6 how to finally obtain θ-trees.

Definition 10.43 ((τ, θ)-tree)

Let τ, θ ∈ B∗. A (τ, θ)-tree is a tree of width bounded by 2|Q|, whose nodes labels belong to τθ∗
or θ∗. Furthermore, the two following conditions hold:

▶ any node with label in θ+ has an ancestor with label in τθ∗
▶ along a given branch, there is at most one node with label in τθ∗.

An example of (τ, θ)-tree is depicted in Figure 10.54a. The value of a finite pointy (τ, θ)-tree is either
ε or τθm for somem ⩾ 0. The value of an infinite fertile (τ, θ)-tree is necessarily τθω . In practice, the
node labels of the (τ, θ)-trees that we shall manipulate will always belong to a finite set. Therefore we
assume that the alphabet Slices can be used to describe the vertical slices of (τ, θ)-trees (recall that this
alphabet was introduced in Section 10.2.2 to describe the vertical slices of θ-trees).

Intuitively, the reason why (τ, θ)-trees occur in our construction is Lemma 10.36, which shows that
the productions starting in separable compatible sets are prefixes of τθω for some τ, θ ∈ B∗. Hence the
proof of Proposition 10.44 will crucially rely on the properties of compatible sets.

Proposition 10.44 (Computing (τ, θ)-trees)

One can build a sequential function g : (A ⊎ Comp)ω ⇀ (Slices ⊎ {#})ω such that for all
u ∈ Dom(f), g(buildSteps(u)) is:

▶ either an infinite sequence t1#t2# · · · where:

Jump to contents

10.5. COMPUTING (τ, θ)-TREES FROMCOMPATIBLE SETS 255

▶ for all i ⩾ 1 ti is a finite pointy (τi, θi)-tree of value αi with |τi|, |θi| ⩽ Ω!;
▶ α1α2 · · · = f(u);

▶ or a finite sequence t1#t2# · · ·#tn#t where:
▶ for all 1 ⩽ i ⩽ n, ti is a finite pointy (τi, θi)-tree of value αi with |τi|, |θi| ⩽ Ω!;
▶ t is an infinite fertile (τ, θ)-tree (of value τθω) with |θ| ⩽ Ω!;
▶ α1 · · ·αnθ

ω = f(u).

The rest of Section 10.5 is devoted to the detailed proof of Proposition 10.44. For this, we describe
a 1DTω which computes a function g : (A ⊎ Comp)ω ⇀ (Slices ⊎ {#})ω .

In order to simplify the notations, we extend the notions of advances and common part to subsets of
pre-steps. Formally, ifJ, v, C is a pre-step and∅ ̸= R ⊆ C , we let prodvJ,R(q) := prodvJ,C(q) for q ∈ R.
If J, v, C is an initial pre-step, we define comv

J,R, advvJ,R and advmv
J,R as we did in Definition 10.31 for

C . This definition makes sense since the prodvJ,R(q) for q ∈ R are still mutual prefixes.

10.5.1 Information stored by the one-way transducer

In this section we present the informations that will be stored in the finite memory of the 1DTω which
computes a function g verifying the conditions of Proposition 10.44. More precisely, we shall describe
Invariants (1) to (5) which are maintained during the computation of this 1DTω .

10.5.1.1 Rigid sets. Let u ∈ Dom(f). Assume that buildSteps(u) has shape S0u[1]S1u[2]S2 · · · .
For i ⩾ 0, we say that R ⊆ Si is i-rigid if the maximal advance of the initial runs described by
S0u[1]S1 · · ·u[i]Si has “always” been “small”. This notion is formalized in Definition 10.45.

Definition 10.45 (Rigid set)

Let i ⩾ 0 andR ⊆ Si. We say thatR is i-rigid if advmu[1:j]

S0,pred
u[j+1:i]
Sj,Si

(R)
< 2Ω! for all 0 ⩽ j ⩽ i.

Observe that the subsets ofSi which are not i-rigid are necessarily separable. However, the converse
may not hold: being separable means that initial runs with different lengths can be found, but it is not
necessarily thosewhich are described by the sequenceS0u[1]S1u[2]S2 · · · . Also observe that any subset
of an i-rigid set is also i-rigid. We denote by Rigidi the set of maximal (for inclusion) i-rigid subsets of
Si. Since the sets {q} for q ∈ Si are i-rigid, we have∅ ̸∈ Rigidi for all i ⩾ 0.

10.5.1.2 Invariants maintained by the one-way transducer. Assume that the 1DTω has read
S0u[1]S1 · · ·u[i]Si for some i ⩾ 0. It has produced the output t1# · · ·#tℓ#t ∈ (C ⊎ {#})∗ where:

▶ for all 1 ⩽ j ⩽ ℓ, tj is a pointy (τj , θj)-tree of value ψj , where |τj | ⩽ Ω!, |θj | = Ω! ;
▶ t is a (τ, θ)-tree where |τ | ⩽ Ω!, |θ| = Ω! (this tree is currently being built).

We let ψ := ψ1 · · ·ψℓ. We shall ensure that the following invariants hold:

(1) the deepest leaves of t are indexed by the elements of Rigidi. For all R ∈ Rigidi, let αR be the
concatenation of the labels along the branch from the root of t to the deepest leaf indexed byR;

(2) the 1DTω stores (in its finite states) the functions13 advu[1:i]S0,R
: R→ B∗ forR ∈ Rigidi;

(3) the 1DTω stores (in its finite states) two functions buffer1, buffer2 : Rigidi → B∗ such that:
(a) for allR ∈ Rigidi, buffer1(R) ⊑ τ and buffer2(R) ⊏ θ2;

13Since the setR is i-rigid, this information is bounded.

Jump to contents

256 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

(b) for allR ∈ Rigidi, ψ αR buffer1(R) buffer2(R) = comu[1:i]
S0,R

;
(4) if Si is i-rigid (then |Rigidi| = 1), then buffer1(Si) = buffer2(Si) = ε;
(5) if Si is not i-rigid (then |Rigidi| > 1):

(a) for allR ∈ Rigidi, if |buffer2(R)| < Ω! then αR = ε, and buffer2(R) = ε if buffer1(R) ̸= τ ;
(b) for allR ∈ Rigidi, if |buffer2(R)| ⩾ Ω! then buffer1(R) = ε and αR ∈ τθ∗;
(c) for all “future” step Si, v,D and q ∈ D, produ[1:i]vS0,D

(q) ⊑ ψ τ θω .

The main role of buffer2 is to temporarily keep track of part of the current production, until a value
θ is completely produced and therefore can be added to the tree. The role of buffer1 is similar for τ .
Furthermore, these buffers will play a role to ensure that the productions are “long enough” in Sec-
tion 10.5.2.3 when dealing with the most technical case of update (when Si, u[i+1], Si+1 is not a step).

10.5.2 Updates of the one-way transducer

The goal of Section 10.5.2 it to describe the updates of the 1DTω which computes the function g, while
preserving the invariants of Section 10.5.1.2 at each step of its computation.

For i = 0, observe that S0 is 0-rigid and comε
S0,S0

= ε. Therefore it is sufficient to output a tree
which consists in a single node labelled by ε and indexed by S0. The advances are also empty and we let
buffer1(S0) := buffer2(S0) := ε. It is easy to see that Invariants (1) to (4) hold.

In the rest of Section 10.5.2, we assume that the 1DTω has read the input S0u[1]S1 · · ·u[i]Si so far
for some i ⩾ 1 and that the invariants of Section 10.5.1.2 hold (we shall re-use the notations of this
section). We explain the updates of the 1DTω when reading u[i+1]Si+1, which on depends the various
cases presented in Sections 10.5.2.1 to 10.5.2.3. Observe that the 1DTω can determine which case holds,
thanks to the bounded information that it has stored in its finite states.

10.5.2.1 Update when predu[i+1]
Si,Si+1

(Si+1) is not i-rigid and Si, u[i+1], Si+1 is a step. In this case,
Si cannot be i-rigid and therefore Invariant (5) holds. Furthermore, Si+1 cannot be (i+1)-rigid. For all
S ∈ Rigidi+1, let14 RS ∈ Rigidi be such that predu[i+1]

Si,Si+1
(S) ⊆ RS .

Recall that by Invariant (1) the deepest leaves of the (τ, θ)-tree t are indexed by the elements orRigidi.
The main idea is to pursue the construction on this tree by relying Invariant (5)(c).

LetS ∈ Rigidi+1. By recombining the values advu[1:i]S0,RS
(q) for q ∈ RS and produ[i+1]

Si,Si+1
(q) for q ∈ S,

the 1DTωcan determine15 the values advu[1:i+1]
S0,S

(q) for q ∈ S and βS ∈ B∗ such that:

ψ αRS
buffer1(R) buffer2(R) βS = comu[1:i+1]

S0,S
.

Since Si, u[i], Si+1 is a step, we get by Invariant (5):

▶ if buffer2(RS) ⩾ Ω!, then τ ⊑ αR, buffer1(RS) = ε and buffer2(R)βS ⊑ θω . Therefore the
1DTω can determinem ⩾ 0 and θ ⊑ θ′ ⊏ θ2 such that buffer2(RS)βS = θmθ′.
In this case, the 1DTω defines buffer1(S) := ε and buffer2(S) := θ′. Concerning the output, it
adds a child to the node of t indexed byRS . This child is indexed by S and labelled with θm.

▶ if buffer2(RS) < Ω! , then buffer1(RS) buffer2(RS)βS ⊑ τ θω . The 1DTω can determine τ ′ ⊑ τ
and θ′ ⊑ θω such that buffer1(RS) buffer2(RS)βS = τ ′θ′ and θ′ = ε if τ ′ ̸= τ . Now:
▶ if θ′ ⊏ θ , the 1DTω updates buffer1(S) := τ ′ and buffer2(S) := θ′. For the output, it adds a

child to the node of t indexed byRS . This child is indexed by S and labelled with ε;
14There may exist several suchRS , but choosing any of them is enough.
15Formally, this computation is hardcoded in its states and transitions, since it only manipulates bounded values.

Jump to contents

10.5. COMPUTING (τ, θ)-TREES FROMCOMPATIBLE SETS 257

▶ if θ ⊑ θ′, the 1DTω determinesm ⩾ 0 and θ ⊑ θ′′ ⊏ θ2 such that θmθ′′ = θ′. It updates
buffer1(S) := ε and buffer2(S) := θ′′. Concerning the output, it adds a child to the node of
t indexed byRS . This child is indexed by S and labelled with τθm;

It is easy to show that the invariants of Section 10.5.1.2 hold after applying this operation for all
S ∈ Rigidi+1. The fact that Si, u[i+1], Si+1 is a step is crucial for maintaining Invariant (5)(c).

10.5.2.2 Update when predu[i+1]
Si,Si+1

(Si+1) is i-rigid. In this case, there exists R ∈ Rigidi such that
predu[i+1]

Si,Si+1
(Si+1) ⊆ R. Furthermore by Invariant (1) the (τ, θ)-tree t has a deepest leaf indexed by R

and by Invariant (3)(b) we obtain ψ αR buffer1(R) buffer2(R) = comu[1:i]
S0,R

.

By recombining the values buffer1(R), buffer2(R), advu[1:i]S0,R
(q) for q ∈ C and produ[i+1]

Si,Si+1
(q) for

q ∈ Si+1, the 1DTωcan determine the values advu[1:i+1]
S0,Si+1

(q) for q ∈ Si+1 and β ∈ B∗ such that
ψ αR β = comu[1:i+1]

S0,Si+1
. It also factors β = β1 · · ·βp with |βj | ⩽ Ω! for all 1 ⩽ j ⩽ p.

For the output, 1DTω first adds a child labelled by ε to the deepest leaf of t which is indexed by R.
This way, the last (τ, θ)-tree of the output is now pointy and has value αR. After this tree, the 1DTω

adds p new trees consisting of single nodes labelled by β1, . . . , βp. The rest depends on Si+1:

▶ if Si+1 is (i+1)-rigid, then the 1DTω simply lets buffer1(Si+1) := ε and buffer2(Si+1) := ε;
▶ if Si+1 is not (i+1)-rigid, then in particular Si+1 is separable. Thanks to Lemma 10.36, there

exist γ, π ∈ B∗ with |γ| ⩽ Ω!, and |π| = Ω! (which can be determined by the 1DTω thanks to
the advuS0,Si+1

(q) for q ∈ C) such that for all step Si+1, v,D and q ∈ D we have:

advu[1:i+1]
S0,Si+1

(p)prodvSi+1,D(q) ⊑ γπω for p := predvSi+1,D(q). (10.46)

For all S ∈ Rigidi+1, the 1DTω can determine the values advu[1:i+1]
S0,S

(q) for q ∈ S and βS such
that ψ αR β βS = comu[1:i+1]

S0,S
. Furthermore since ψ αR β = comu[1:i+1]

S0,Si+1
and thanks to Equa-

tion (10.46), we get βS ⊑ γπω . The 1DTω then initiates a (γ, π)-tree which consists of a root
labelled by ε and children indexed by the S ∈ Rigidi+1. The labels of these children and the
according buffer1(S) and buffer2(S) are built as we did in Section 10.5.2.1.

It is easy to show that the invariants of Section 10.5.1.2 hold after this operation.

10.5.2.3 Update when predu[i+1]
Si,Si+1

(Si+1) is not i-rigid and Si, u[i+1], Si+1 is not a step. The key
difference with Section 10.5.2.1 is that Invariant (5)(c) cannot be used since Si, u[i+1], Si+1 is not a
step. Therefore one cannot ensure that the produ[i+1]

Si,Si+1
(q) for q ∈ Si+1 are factors of τθω .

Let S′
i := predu[i+1]

Si,Si+1
(Si+1), observe that S′

i, u[i+1], Si+1 is a now a step. Let Rigid′i be the set of
maximal i-rigid subsets of S′

i, observe that Rigid′i = {S ∩ S′
i | S ∈ Rigidi}. By recombining the values

of the buffers and the advances as done in Section 10.5.2.1, the 1DTω can add slices to the (τ, θ)-tree and
update the buffers so that now the invariants of Section 10.5.1.2 hold when Si is replaced by S′

i, except
for Invariant (5)(c) which cannot be preserved. However, we still have that produ[1:i]S0,S′

i
(q) ⊑ ψ τ θω for

all q ∈ S′
i since this result was true for all q ∈ Si. With such a preparation, we assume that the deepest

leaves of the (τ, θ)-tree are henceforth indexed by the sets of Rigid′i.

The rest of the proof distinguishes two cases, depending on whether the (τ, θ)-tree has non-empty
values on the branches which go from the root to its deepest leaves or not:

Jump to contents

258 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

▶ if |buffer2(R)| < Ω! for allR ∈ Rigid′i, then αR = ε for allR ∈ Rigid′i thanks to Invariant (5)(a).
In other words, the (τ, θ)-tree t only contains empty information along its useful branches. In
this case, the main idea is to finish this tree and to create a new tree.
Observe that ψ ⊑ comu[1:i]

S0,S′
i
thanks to Invariant (3)(b). Thus by recombining the values stored in

the buffers and advances, the 1DTω can determine β ∈ B∗ such thatψβ = comu[1:i+1]
S0,Si+1

. It factors
β = β1 · · ·βp with |βj | ⩽ Ω! for all 1 ⩽ j ⩽ p. The 1DTω thus adds an extra leaf with label ε
to any of the deepest leaves of the (τ, θ)-tree, which becomes pointy and with value ε. After this
tree, the 1DTω adds p new trees consisting of single nodes labelled by β1, . . . , βp.
Since Si+1 is separable, then by Lemma 10.36 the 1DTω can compute values γ, π ∈ B∗ with
|γ| ⩽ Ω!, and |π| = Ω!. The end of the construction consists in creating a new (γ, π)-tree, as we
did in Section 10.5.2.2. After this operation, all the invariants of Section 10.5.1.2 hold;

▶ if |buffer2(R)| ⩾ Ω! for someR ∈ Rigid′i. In this case, we intend to show that Invariant (5)(c) still
holds with the current τ and θ, by relying on the fact that produ[1:i]S0,S′

i
(q) for some q ∈ S′

i is “long
enough” to exhibit repetitions of θ. More precisely, we show Claim 10.47.

Claim 10.47 (Preservation of Invariant (5)(c))

For all step S′
i, v,D and q ∈ D, produ[1:i]vS0,D

(q) ⊑ ψ τ θω .

Proof. Since S′
i is not i-rigid, there exists 0 ⩽ j ⩽ i such that advmu[1:j]

S0,E
⩾ 2Ω! where E

is defined as predu[j+1:i]
Sj ,Si

(C). In particular E is separable and by applying Lemma 10.36 to
S0, u[1:j], E, there exists16 values γ, π ∈ B∗ with |γ| ⩽ Ω! and |π| = Ω!, which describe
loops in the productions. In particular, there exists η ⊑ πω such that advmu[1:j]

S0,E
= γη. Since

advmu[1:j]
S0,E

⩾ 2Ω!, one has |η| = |advmu[1:j]
S0,E
| − |γ| ⩾ 2Ω!− Ω! ⩾ Ω!.

For all stepC, v,D, we obtain a stepE, u[j+1:i]v,D. Therefore, for all q ∈ D:

advu[1:j]S0,E
(predu[j+1:i]v

E,D (q))produ[j+1:i]v
E,D (q) ⊑ γπω

and thus, by adding comu[1:j]
S0,E

on both sides:

produ[1:i]vS0,D
(q) ⊑ comu[1:j]

S0,E
γπω. (10.48)

To obtain Claim 10.47, it is thus sufficient to show that comu[1:j]
S0,E

γπω = ψ τ θω .
For showing this statement, we consider q ∈ S′

i such that produ[1:i]S0,S′
i
(q) has maximal length,

then for all p ∈ S′
i we have produ[1:i]S0,S′

i
(p) ⊑ produ[1:i]S0,S′

i
(q). Since there exists R ⊆ S′

i such

that |buffer2(R)| ⩾ Ω! and comu[1:i]
S0,R

⊑ produ[1:i]S0,S′
i
(q), we conclude thanks to the invariants

that produ[1:i]S0,S′
i
(q) has shape ψτ θm θ′ for somem ⩾ 1 and θ′ ⊏ θ. Furthermore:

comu[1:j]
S0,E

γη = comu[1:j]
S0,E

advmu[1:j]
S0,E

⊑ ψτ θm θ′ = produ[1:i]S0,S′
i
(q) ⊑ comu[1:j]

S0,E
γπω.

(10.49)

by using Equation (10.48) to obtain the rightmost hand-side.
Finally, two cases can occur depending on the sign of ℓ := |ψτ | − |comu[1:j]

S0,E
γ|:

▶ if ℓ ⩾ 0, then ψτ = comu[1:j]
S0,E

γ(πω[1:ℓ]) and θ = πω[ℓ+1:ℓ+1+Ω!];

16Since our goal is to pursue the current (τ, θ)-tree, the 1DTω will have no need to determine these values.

Jump to contents

10.5. COMPUTING (τ, θ)-TREES FROMCOMPATIBLE SETS 259

▶ if ℓ < 0, then ψτ ((θmθ′)[|ℓ|:]) = comu[1:j]
S0,E

γ and η ⊑ (θmθ′)[|ℓ|+1:] ⊑ θω[ℓ+1:].
But since η ⊑ πω and |η| ⩾ Ω! (it is long enough to exhibit a repetition of π), we
conclude that π = θω[|ℓ|+1 : |ℓ|+1+Ω!].

In both cases, we conclude that comu[1:j]
S0,E

γπω = ψ τ θω . ◀

Thanks toClaim10.47, all the invariants of Section 10.5.2.1 holdwhenSi is replaced byS′
i. There-

fore the end of the construction for dealing with the step S′
i, u[i+1], Si+1 (i.e. adding extra ver-

tical slices and modifying the buffers) can be done as in Section 10.5.2.1.

10.5.3 Correctness of the construction

The goal of this section is to show that the output produced by the 1DTω verifies the properties re-
quired for Proposition 10.44. This output is indeed a sequence of (τ, θ)-tree. It remains to show that the
concatenation of the values is indeed f(u) and that if an infinite tree was built, it is fertile.

We first reformulate the fact thatT was parallel productive (Definition 10.10) to obtainClaim 10.50.
This key result roughly states that all the infinite initial runs of T have an infinite output.

Claim 10.50 (Infinite output)

Let u ∈ Dom(f) and q0 u[1]|α1−−−−→ q1
u[1]|α2−−−−→ · · · be an infinite initial run of T labelled by u

(which is not necessarily accepting). Then α1α2 · · · = f(u). In particular, this output is infinite.

Proof. Let p0 u[1]|β1−−−−→ p1
u[1]|β2−−−−→ · · · be the (necessarily unique) accepting run of T labelled by

u. Observe that I, u[1:i], {pi, qi} is a pre-step for all i ⩾ 0 and therefore α1 · · ·αi and β1 · · ·βi
are mutual prefixes by Lemma 10.20. It remains to show that α1α2 · · · ∈ Bω . By the pigeonhole
principle, there exist an infinite sequence 0 ⩽ i1 < i2 < . . . and states p ∈ F and q ∈ Q such
that pij = p and qij = q for all j ⩾ 0. Since T is parallel productive (recall Definition 10.10),
then αij+1 · · ·αij+1

̸= ε for all j ⩾ 0. The result follows immediately. ◀

As a consequence, we observe that well-chosen common parts always converge to the output of T .

Claim 10.51 (Increasing common part)

Let u ∈ Dom(f) and S0u[1]S1 · · · := buildSteps(u). Then comu[1:i]
S0,Si

→ f(u).

Proof. For all i ⩾ 0 letRi :=
⋂

j⩾i predu[i:j]Si,Sj
(Sj). Intuitively,Ri contains the states of Si which

have a future run reaching Sj for all j ⩾ i. It follows from König’s lemma that q ∈ Ri if and only
if there exists an infinite run q u[i+1]−−−−→ pi+1

u[i+2]−−−−→ · · · such that pj ∈ Sj for all j ⩾ i+1.
From this characterization, we deduce that predu[i+1]

Si,Si+1
(Ri+1) = Ri for all i ⩾ 0. Therefore

the pred relation over the Ri for i ⩾ 0 describes an infinite tree of bounded width, where each
node has at least one child. In other words, it describes a finite number of infinite initial runs ofT .
Therefore by Claim 10.50 we deduce that comu[1:i]

S0,Ri
→ f(u).

We observe that for all i ⩾ 0, there exists j ⩾ i such that predu[i+1:j]
Si,Sj

(Sj) = Ri. Indeed, since

Sj , u[j+1], Sj+1 is a pre-step for all j ⩾ i, then predu[i+1:j]
Si,Sj

(Sj) ⊇ predu[i+1:j+1]
Si,Sj+1

(Sj+1). Hence

(predu[i+1:j]
Si,Sj

(Sj))j⩾i is ultimately constant, and its limit isRi.

Now if j ⩾ i is such that predu[i+1:j]
Si,Sj

(Sj) = Ri, we have comu[1:i]
S0,Ri

⊑ comu[1:j]
S0,Sj

. Therefore
Claim 10.51 follows from the statements of the two previous paragraphs. ◀

Jump to contents

260 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

Now we are ready to show the correctness of our construction, by distinguishing two cases:

▶ if the output is an infinite sequence of finite trees. In the construction of Section 10.5.2, each time
a new (τ, θ)-tree is created, the concatenation ψ of the values of the trees produced so far is (up
to a bounded difference) comu[1:i]

S0,Si
for some i ⩾ 0. The result follows from Claim 10.51;

▶ if the output is a finite sequence which ends with an infinite tree. Let us consider this last infinite
(τ, θ)-tree. In the construction of Section 10.5.2, each time an operation is performed on this
tree, the current deepest leaves are indexed by theR ∈ Rigidi for some i ⩾ 0. Furthermore (with
the notations of this section), we maintain the invariant ψαR = comu[1:i]

S0,R
. In particular, we have

comu[1:i]
S0,Si

⊑ ψαR for all R ∈ Rigidi. Since these values tend to f(u), the result follows from
Claim 10.51 and from Claim 10.52 which provides an easy reformulation of fertility.

Claim 10.52 (Finite branches in a fertile tree)

An infinite tree whose nodes are labelled byB∗ is fertile if and only if for allN ⩾ 1, there
exists d ⩾ 1 such that for all nodes of depth⩾ d, the concatenation of the node labels along
the branch which goes from the root to this node is a word of length⩾ N .

Proof. The “if” direction is obvious. Conversely, assume that the tree is fertile, let N ⩾ 1
and consider the set S of nodes such that the output along the branch which goes from the
root to this node is a word of length < N . Since this property is preserved under taking
ancestors, S is a sub-tree of the original tree. Observe thatS has no infinite branch by defin-
ition of fertility, thus it is finite by König’s lemma. The result follows. ◀

10.6 Computing θ-trees from (τ, θ)-trees

In Section 10.5 we have shown a first half of Theorem 10.26, by building a sequence of (τ, θ)-trees
(recall Definition 10.43) from a sequence of pre-steps. The goal of Section 10.6 is to conclude this proof
by building in Proposition 10.53 a sequence of θ-trees from the sequence of (τ, θ)-trees. Theorem 10.26
directly follows since deterministic regular functions are closed under composition (Theorem 9.39).

Proposition 10.53 (Computing θ-trees)

One can build a deterministic regular function17 h : (Slices⊎{#})ω ⇀ (Slices⊎{#})ω such that
if g is the function of Proposition 10.44, then buildTrees := h◦g : (A⊎Comp)ω ⇀ (Slices⊎{#})ω
verifies the conditions required for Theorem 10.26.

Proof. First, we shall assume that labels of (τ, θ)-tree built by g are only τ, θ or ε (and no longer
τθm with m ⩾ 1 or θm with m ⩾ 2). This simplification can be achieved by first applying a
sequential function which pre-processes the sequence of trees by dividing each vertical slice con-
taining a label τθm withm ⩾ 1 or θm withm ⩾ 2 into several vertical slices.

Let u ∈ Dom(f). We are ready to describe a 1DTω with finite lookarounds which transforms
the sequence g(buildSteps(u)) of (τ, θ)-trees into a sequence of θ-trees. We let h be the function
computed by this machine, thanks to Theorem 9.4 it will be deterministic regular. Without loss of
generalities (this information could have been encoded in the alphabet Slices in Section 10.5), we
assume that when starting to read a (τ, θ)-tree, the machine has access to the values of τ and θ.

17We shall in fact build a deterministic rational function (but this precise statement is not useful in our proof).

Jump to contents

10.7. COMPUTING THE OUTPUT FROM θ-TREES 261

If τ = ε, then the current (τ, θ)-tree is already a θ-tree and the 1DTω can output it directly.
Now assume that the 1DTω starts reading a (τ, θ)-tree with τ ̸= ε. Because of Claim 10.52 and the
properties of g(buildSteps(u)) given by Proposition 10.44, exactly one of the following occurs:
(1) either there exists a depth such that all branches of the (τ, θ)-tree going to this depth meet a

label τ . In this case, the 1DTω first outputs a τ -tree with a single node and then transforms
the (τ, θ)-tree by removing the τ but keeping the θ, as depicted in Figure 10.54;

ε ε

τ

τ

ε

θ

ε

τ

ε

θ

θ

τ

(a) Original (τ, θ)-tree.

τ # ε ε

ε

ε

ε

θ

ε

ε

ε

θ

θ

ε

(b) Equivalent τ -tree and θ-tree (changes are highlighted).

Figure 10.54: Transformation when all branches produce a τ at some point.

(2) or the (τ, θ)-tree is finite, pointy and has value ε. In this case, the 1DTω does not recopy the
forthcoming (τ, θ)-tree since it is useless.

The key argument is that the 1DTω can determine whether Item (1) or Item (2) holds by using a
finite lookaround. Indeed, it candetect if Item (1) is verified or if the current (τ, θ)-tree is finite. ◀

10.7 Computing the output from θ-trees

The goal of this section is to show Theorem 10.28. Given a sequence of θ-trees which verifies the condi-
tions of Theorem 10.26, we explain how to compute the concatenation of the tree values by a determin-
istic regular function denoted buildOutput. For this purpose, we shall build a 1-bounded DSSTω (recall
from Theorem 9.13 that such a machine computes a deterministic regular function).

If the input always consists of an infinite sequence of finite trees, the result is easy. Indeed, in this
case the DSSTω can e.g. maintain in its registers the concatenation of the labels along the branches, and
output the according value each time a tree is ended (observe that having θ-trees would not be useful).
However, this algorithm no longer works when some tree can be infinite, since it would not produce
an infinite output in this case. Therefore, we devise a more complex DSSTω which ensures that θω is
produced when reading an infinite fertile θ-tree, while being able to compute the values of the branches.

10.7.1 Information stored by the streaming string transducer

Assume that the 1DTω is reading a vertical slice in Sliceswhich represents a set of nodesN in the current
θ-tree. Observe thatN is a set of nodes which have the same depth. We define set chains as decreasing
sequences of subsets ofN . This key notion18 is formalized in Definition 10.55.

Definition 10.55 (Set chain)

A set chain is a finite word C1 · · ·Cn over the alphabet 2N ∖ ∅ such that C1 = N and for all
1 ⩽ i ⩽ n−1 we have∅ ̸= Ci+1 ⊂ Ci.

We let Chains be the set of all set chains. SinceN has bounded size, so does Chains.
18Set chains are inspired by the (more complex) trees of compatibles in the original proof of [CD22].

Jump to contents

262 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

10.7.1.1 Information stored by the streaming string transducer. After reading the vertical slice
describingN , the DSSTω keeps track of the following elements:

▶ the content of its output register out;
▶ for allC1 · · ·Cn ∈ Chains (recall from Definition 10.55 thatC1 = N):

▶ a function bufferC1···Cn
: Cn → {ε, θ} (stored in the finite states);

▶ the content of a register outC1···Cn . For n = 1, we identify the registers outN and out.

Observe that the information stored in the buffers is bounded since |Chains| and θ are so. Whenever
a configuration of the DSSTω is clearly fixed, we abuse notations and denote by outC1···Cn the value
contained in the register outC1···Cn

in this configuration.

10.7.1.2 Invariants maintained by the streaming string transducer. Let t1, . . . , tℓ be the finite
pointy trees read so far by theDSSTω and let t be the current θ-tree. Letψ1, . . . , ψℓ ∈ B∗ be the values
of t1, . . . , tℓ and ψ := ψ1 · · ·ψℓ. For all t ∈ N , let αt ∈ θ∗ be the concatenation of the node labels
along the branch which goes from the root of t to t. The following invariants will be preserved:

(1) for allC1 · · ·Cn ∈ Chains with n ⩾ 2, outC1···Cn
= θm for somem ⩾ 0;

(2) for allC1 · · ·Cn ∈ Chains, there exists t ∈ Cn such that bufferC1···Cn
(t) = ε;

(3) for all t ∈ N and allC1 · · ·Cn ∈ Chains such thatCn = {t}, we have

ψ αt =

n∏
i=1

outC1···Ci bufferC1···Ci(t). (10.56)

The main intuition behind Invariant (3) is that the DSSTω is able to recover αt for all t ∈ N . Fur-
thermore, for allN ′ ⊆ N , it stores a common prefix of the αt for t ∈ N ′. Observe that all the terms of
Equation (10.56) belong to θ∗, except possibly the first one which is outC1

= outN = out. The buffers
will be used as a key feature to ensure that the output along an infinite fertile θ-tree is infinite.

10.7.2 Updates of the streaming string transducer

Without loss of generalities (up to first preprocessing the input by applying a sequential function which
duplicates each vertical slice), we assume that exactly one of the following holds for all vertical slice:

θ

ε

θ

· · ·

· · ·

· · ·

(a) Bijective parent function.

ε

ε

· · ·

· · ·

· · ·

(b) Injective parent function.

ε

ε

ε

· · ·

· · ·

(c) Surjective parent function.

Figure 10.57: The three possible cases of vertical slices.

(1) either the parent function is bijective (between the current nodes and those of previous depth);
(2) or all nodes have label ε and the parent function is injective;
(3) or all nodes have label ε and the parent function is surjective.

Jump to contents

10.7. COMPUTING THE OUTPUT FROM θ-TREES 263

The three cases are depicted in Figures 10.57a to 10.57c. By the same argument, we shall also assume
that the root of a θ-tree is always labelled with ε. These assumptions aim at simplifying the description
of the transitions of the DSSTω , since it they enable to separately deal with various behaviors.

Let N be the set of nodes which is currently being read by the DSSTω (i.e. the nodes described by
the current vertical slice) and Chains be the according set of set chains. We denote by N (resp. Chains)
the set of nodes (resp. of set chains) which was seen in the previous vertical slice.

10.7.2.1 Updateswhen the parent function is bijective. In this case, the setN can be seen identified
with the setN . For all t ∈ N , let θt ∈ {ε, θ} denote the label of t in the θ-tree. The main idea is to add
this value to bufferN (t). Formally, the DSSTω applies the following updates:

▶ bufferN (t) := bufferN (t) θt for all t ∈ N ;
▶ outπ 7→ outπ for all π ∈ Chains and bufferπ := bufferπ for allN ̸= π ∈ Chains.

It is clear that Invariants (1) and (3) hold. However, nowwemay have bufferN : N → {ε, θ, θ2} (and
not necessarily bufferN : N → {ε, θ}) since we have θt ∈ {ε, θ}.

To ensure bufferC1···Cn : Cn → {ε, θ} for all C1 · · ·Cn ∈ Chains, the DSSTω applies the function
spread(N) from Algorithm 10.58. The main intuition concerning this function is that it “sends down”
the excessively long bufferπ along the set chains, while using the registers outπ to store greatest common
prefixes. Formally, the function spread(N) adds to out the value θm :=

∧
t∈NbufferN (t) and removes

θm to each bufferN (t). Then it sends down the values which are still too long. Producing as soon as
possible this value θm is a key argument to ensure that the output is infinite along an infinite fertile
θ-tree.

Algorithm 10.58: Spreading down the values of the bufferπ .
1 Function spread(C1 · · ·Cn)
2 /* 1. Add the common prefix θm to the local output */
3 θm :=

∧
t∈NbufferC1···Cn(t)

4 outC1···Cn 7→ outC1···Cn θ
m

5 bufferC1···Cn(t) := (θm)−1bufferC1···Cn(t) for all t ∈ Cn

6 /* 2. Reduce to θ the bufferπ(q) which are still too long */
7 for t ∈ Cn do
8 if bufferC1···CN

(t) = θp with p ⩾ 2 then
9 forCn+1 ⊂ Cn such that t ∈ Cn+1 do
10 bufferC1···CnCn+1(t) := bufferC1···CnCn+1(t) θ

p−1

11 end
12 bufferC1···Cn

(t) := θ

13 end
14 end
15 /* 3. Recursive calls */
16 for∅ ̸= Cn+1 ⊂ Cn do
17 spread(C1 · · ·CnCn+1)
18 end

It is an easy check that executing the function spread(N) preserves Invariants (1) and (3) and makes
Invariant (2) true. It also ensures that bufferC1···Cn

: Cn → {ε, θ} for allC1 · · ·Cn ∈ Chains.

10.7.2.2 Updates when the parent function is injective and all nodes have label ε. In this case,
the set N can be seen as a strict subset ofN . With this identification we get Chains = {NC2 · · ·Cn |

Jump to contents

264 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

NNC2 · · ·Cn ∈ Chains}. The DSSTω applies the following updates:

▶ out 7→ out outNN and bufferN (t) := bufferN (t) bufferNN (t) for all t ∈ N ;
▶ outπ 7→ outNπ and bufferπ := bufferNπ for allN ̸= π ∈ Chains.

It is clear Invariants (1) and (3) hold. However, nowwemay have bufferN : N → {ε, θ, θ2} since it is
defined as a concatenation. Therefore, the DSSTω finally applies spread(N) to get bufferC1···Cn : Cn →
{ε, θ} for allC1 · · ·Cn ∈ Chains and to obtain Invariant (2).

10.7.2.3 Updateswhen the parent function is surjective and all nodes have label ε. This technical
case is not especially enlightening, since it just consists in re-shaping the set chains in order to preserve
the invariants of Section 10.7.1.2. Let σ : N → N denote the (surjective) parent function, which natur-
ally extends to a function σ : 2N → 2N . Since σ is surjective, we have σ(N) = N .

Let D1 · · ·Dn ∈ Chains. Let Ci := σ(Di) for all 1 ⩽ i ⩽ n, then C1 = N since D1 = N .
Furthermore,C1 ⊇ · · · ⊇ Cn but wemay not haveC1 · · ·Cn ̸∈ Chains due to possible equalities19. Let
1 = i1 < · · · < im ⩽ n be such that Ci1 = · · · = Ci2−1 ⊃ Ci2 and so on until Cim−1 ⊃ Cim =
· · · = Cn. Observe thatCi1 · · ·Cim ∈ Chains. The DSSTω performs the updates:

▶ if im = n, we let bufferD1···Dn
:= bufferC1···Cn

◦σ : Dn → {ε, θ} and outD1···Dn
7→ outC1···Cn

;
▶ if im < n, we let bufferD1···Dn

:= 0 and outD1···Dn
:= ε.

Let us check that the invariants of Section 10.7.1.2 are preserved. Invariant (1) is trivial. For Invari-
ant (3), let t ∈ N andD1 · · ·Dn ∈ Chains be such thatDn = {t}. Let Ci := σ(Di) for all 1 ⩽ i ⩽ n
and let ρ := Ci1 · · ·Cim as above. Observe thatCim = {t}. It is sufficient to show that:

m∏
j=1

outCi1 ···Cij
bufferCi1 ···Cij

(σ(t)) =

n∏
i=1

outD1···Di
bufferD1···Di

(t).

This equation follows by observing that for all 1 ⩽ i ⩽ n, we have:

▶ if i ̸∈ {i1, . . . , im}, outD1···Di
= ε and bufferD1···Di

= 0;
▶ if i = ij with 1 ⩽ j ⩽ i, outD1···Di

= outCi1 ···Cij
and bufferD1···Di

(t) = bufferCi1 ···Cij
(σ(t)).

We finally apply spread(N) to enforce Invariant (2)

10.7.2.4 Updateswhen reading a new tree. If the 1DTω starts reading a new θ-tree, it means that the
previous treewas finite and pointy. ThereforeN was a singleton {t} and bufferN (t) = ε by Invariant (2).
Hence by Invariant (3) we get ψαt = out, i.e. the output concatenates the values of the trees. Finally,
since the root of the new tree is labelled with ε, it suffices to create an empty buffer.

10.7.3 Correctness of the construction

To conclude the proof of Theorem 10.28, one has to justify that the DSSTω described so far is indeed
1-bounded and that it produces the concatenation of the values of the θ-trees.

10.7.3.1 Boundedness of the transducer. To show that the DSSTω is 1-bounded, we claim that the
following invariant are maintained along the computation. LetN be the set of nodes of the vertical slice
which is currently being read and Chains the according set of set chains. Then for all previous vertical
slice with nodes N ′ and set chains Chains′, if s denotes the substitution applied by the DSSTω when
reading the factor of the input between these two slices, we have the following:

19There may exists distinctCi such that σ(Ci) is the same.

Jump to contents

10.8. DISCUSSION: UNIFORMLY CONTINUOUS RATIONAL FUNCTIONS 265

▶ for all π ∈ Chains and π′ ∈ Chains′, outπ′ occurs at most once in s(outπ);
▶ for all π ⊏ ρ ∈ Chains and π′ ∈ Chains′, outπ′ does not occur both in s(outπ) and s(outρ).

The fact that S is 1-bounded follows (up to trimming the DSSTω) from the first item.

10.7.3.2 Output produced. Section 10.7.2.4 ensures that when the end of a finite pointy tree is met,
the content of out is the concatenation of the values of the trees seen so far. Thus, if the input consists of
an infinite sequence of finite pointy trees, the DSSTω produces the concatenation of their values.

It remains to justify that when reading an infinite fertile θ-tree, the DSSTω produces θω . Let us
consider such a tree. For all i ⩾ 1, we letNi denote the set of nodes of depth i (recall that theNi corres-
ponds to the sets of nodes described by the vertical slices). We assume by contradiction that there exists
j ⩾ 1 such that the DSSTω no longer modifies out after readingNj (i.e. the updates are systematically
out := out during the rest of the computation). We show the key Claim 10.59.

Claim 10.59 (Empty output + empty buffer⇒ empty input + empty buffer)

Let i ⩾ j and t ∈ Ni be such that bufferNi(t) = ε after reading Ni. Let t be the ancestor of t
which belongs toNj , then after readingNj we had bufferNj (t) = ε. Furthermore, the branch of
the θ-tree from t to t has empty labels.

Proof. By induction it is sufficient to show the result for j = i−1, i.e. for the update described in
Section 10.7.2. We re-use the notations of this section and letN := Ni−1 andN := Ni.

We first observe that if bufferN (t) = ε holds right after applying spread(N) and if nothing was
added to out during its execution, then we also had bufferN (t) = ε before applying this function.
The rest of the proof thus only depends on the rest of the update:
▶ for Section 10.7.2.1 (bijective parent function) the update is bufferN (t) := bufferN (t) θtwhich

means that we had both bufferN (t) = ε and θt = ε;
▶ for Section 10.7.2.2, the update is bufferN (t) := bufferN (t) bufferNN (t)whichmeans that we

had bufferN (t) = ε (and the node label is empty by hypothesis);
▶ for Section 10.7.2.3, the update is bufferN (t) := bufferN (t) and the argument the same. ◀

Now let L ⩾ 0 be the maximal length of the concatenation of the node labels along the branches
which go from the root to the nodes ofNj . For all i ⩾ j, by Invariant (2) there exists t ∈ Ni such that
bufferNi

(t) = ε after readingNi. Hence by Claim 10.59 the concatenation of the node labels along the
branch which goes from the root to t has length at most L. This result contradicts Claim 10.52.

10.8 Discussion: uniformly continuous rational functions

The author is not aware of an easyway to generalize the proof of Theorem 10.1 to showConjecture 8.46.
In this section, we discuss a generalization for studying the subclass of rational functions which are
uniformly continuous. The latter seems to be more affordable.

Formally, we say that the function f is uniformly continuous if for all N ⩾ 0, there existsM ⩾ 0
such that if u, v ∈ Dom(f) with |u∧v| ⩾M , then |f(u)∧f(v)| ⩾ N .

Example 10.60 (Uniformly continuous functions)

The function double is uniformly continuous. More generally, any total continuous function of
typeAω → Bω is uniformly continuous since (Aω, d) is a compact20 topological space.

Jump to contents

266 CHAPTER 10. DETERMINIZATION OF CONTINUOUS RATIONAL FUNCTIONS

Let us note that not all sequential functions are continuous.

Example 10.61 (Non-uniform continuity)

The function remove is continuous but not uniformly continuous. Indeed, for all n ⩾ 0 we have
remove(anbω)∧remove(an(cb)ω) = ε.

It is known since [Pri01, Corollary 7] that uniform continuity of rational functions can be decided.
A characterization in terms of twinning properties can be obtained by dropping the condition q′1 ∈ F
in Lemma 10.8. This decidability result was extended to regular functions in [DFKL20, Theorem 16].

In Chapter 10, we have shown that a continuous rational function can be extended to a deterministic
regular one, which can be computed by a copyless DSSTω by Theorem 9.13. In other words, such a
function is computed by a copyless DSSTω which produces a non-empty output infinitely often. We
suspect in Conjecture 10.63 that uniform continuity can be captured by copylessDSSTω which produce
a non-empty output periodically often. This intuition is formalized through the concept of productivity.

Definition 10.62 (Productive streaming string transducer)

A copyless DSSTω S = (A,B,Q, q0, F, δ,R, out, ι, λ) is productive if there existsK ⩾ 0 such
that for all q ∈ Q and u ∈ A∗ with |u| ⩾ K , |λ∗(q, u)(out)|B > 0.

Note that productivity can be decided by looking at the loops of the DSSTω .

Conjecture 10.63 (Uniformly continuous)

A rational function is uniformly continuous if and only if it can be computed by a productive
copyless DSSTω . The conversion is effective.

Proving Conjecture 10.63 may be useful for practical applications, since it would enable to build a
machine which does not spend arbitrary long times reading inputs without providing outputs. In other
words, it is close to aMealy machine, which is one of the basic ingredients for reactive synthesis.

Now, let us briefly substantiate Conjecture 10.63. The main idea is to follow step by step the proof
presented in Chapter 10 for continuous functions. First, as mentioned above, one can adapt Lemma 10.8
to the setting of uniform continuity. Then, one can show that a 1NTω computing a uniformly continuous
function can be transformed into a productive one (meaning that it has no loops with output ε). For the
function buildSteps (Theorem 10.22), we replace the notion of compatible set by the (weaker) notion of
weakly compatible set. It is obtained by dropping all final conditions about runs.

Definition 10.64 (Weakly compatible set)

We say that a subset C ⊆ Q is weakly compatible whenever there exists v ∈ Aω such that for all
q ∈ C , there exists an infinite run ρq labelled by v which starts in state q.

The author believes that the rest of the proof can be adapted accordingly.

20Recall that metric space is compact if one can extract a convergent sub-sequence from any sequence. Given a sequence
(vn)n⩾0 ∈ (Aω)N , one can extract a convergent sub-sequence by considering the set {u ∈ A∗ | u ⊑ vn infinitely often}
which must be infinite. It is prefix-closed and therefore can be seen as a tree. We conclude by applying König’s lemma.

Jump to contents

Outlook

Il faut que tout finisse. . . J’ai joué comme un enfant autour d’une
chose que je ne soupçonnais pas. . . J’ai joué en rêve autour des
pièges de la destinée. . .

Maurice Maeterlinck, Pelléas et Mélisande

The various results of this manuscript provide a deeper understanding of the celebrated two-way
transducer model, both over finite and infinite words. Apart from membership procedures in them-
selves, the proof techniques (from the high-level sketches to the detailed constructions) are also worth
being put in the spotlight. Indeed, they provide a large toolbox for studying other problems.

Future research programs. The author believes that several problems such as Conjectures 4.56, 8.25,
8.38, 10.5 and 10.63 are rather easy1 to solve by adapting the techniques developed of this manuscript.
Beyond these low-hanging fruits, broader research questions are raised by this work:

▶ most of the proofs in this manuscript do not build a canonical object for solving class membership
problems. The author believes that it is worth trying to decide star-freeness of regular functions
(Open question 7.5) without looking for canonical two-way transducers or canonical streaming
string transducers. As suggested in Section 7.7, the strategy would be to describe forbidden com-
binatorial patterns in any transducer which computes a star-free function, and use star-free defin-
able variants of factorization forests in order to build an aperiodic machine whenever it exists. If
this technique proves successful, it will provide a versatile tool for various problems;

▶ the main result2 of Chapter 10 strongly substantiates the conjecture that deterministic regular
functions are exactly the class of continuous regular functions of infinite words (Conjecture 8.46).
The author calls for a substantial research effort in this direction, since proving this conjecture
would be a major and meaningful achievement in the theory of transductions of infinite words.
In this setting, he hopes that leveraging the techniques of Chapter 10 can be helpful;

▶ towards a practical use of the membership and optimization procedures presented in this manu-
script, it is also interesting to study and improve their computational complexity. Obtaining small
complexity bounds is often rather technical (see e.g. the involved constructions of [BGMP18]
when studying the membership problem from regular functions of finite words to rational func-
tions), but it is a necessary step towards an implementation of the procedures.

1 Formally, “rather easy” means that each of these research questions is good for the research internship of a master student.
2The fact that continuous rational functions are deterministic regular, up to considering function extensions.

268 OUTLOOK

Jump to contents

Index

S-polyblind function (finite words), 145–154, 157, 161, 162, 164–166, 172, 173, 176, 180
S-polyregular function (finite words), 124–132, 139, 140, 143–152, 157, 161–166, 168–188
S-rational series (finite words), 40, 42, 114, 115, 124, 129, 131, 144, 146, 148, 149, 168, 171, 174, 175,

180, 184–187
S-regular function (finite words), 149, 153
ω-lookarounds (infinite words), 36, 41, 194, 201–204, 206–209, 217, 228, 230, 235

aperiodic monoid, 168, 170, 172, 181, 186, 188
aperiodic transducer, 38, 41, 167–171, 173, 180, 182–184, 188, 267
architecture, 157–161

bimachine (finite words), 53, 54, 57, 58, 127, 169, 199
bimachine (infinite words), 199, 203, 228
blind counting transducer (finite words), 146–148, 151, 152, 154, 157, 162, 163, 166
blind pebble transducer (finite words), 37–40, 42, 66, 79–82, 84–88, 90–92, 97, 100, 106, 119, 128, 132,

137, 145–149, 176, 274
bounded copy, 103, 109–114, 119, 207, 209, 211, 212, 214–221, 224, 225, 227, 248, 249, 261, 264, 265
Büchi deterministic language, 194–196, 198, 200, 212, 235, 241
Büchi final condition, 194–199, 201, 203, 204, 211, 212, 239, 240

canonical model, 31, 35, 38, 40–42, 51, 54, 59, 166–169, 172–174, 179, 184, 187, 188, 197, 199, 267
Cauchy product, 129–131, 149, 171, 176, 181, 182
compatible set, 239, 240, 244–251, 254, 266
computable functions (infinite words), 36, 41, 194, 205–207, 239
context, 70, 71, 85, 86, 90, 91, 133–136, 140–142, 154, 159
continuity, 36, 38, 42, 196, 202, 205, 206, 211, 239–243, 265–267
copyless, 34, 40, 41, 59, 100, 109–115, 207, 211–213, 215, 217, 227, 266
counting transducer (finite words), 70, 77, 124, 126–128, 132–143, 146, 147, 151–157, 159, 160, 163,

165, 168, 170, 173, 174, 180, 184, 185, 188
crossing sequence of a two-way transducer, 69, 274

deterministic rational function (infinite words), 241, 246, 248, 260
deterministic regular function (infinite words), 41, 42, 58, 194, 195, 202–204, 206–208, 211, 212, 225,

227, 228, 235–237, 239–241, 243, 244, 246–249, 260, 261, 266, 267, 275
deterministic Turing machine (infinite words), 36, 194, 205, 206
deterministic two-way transducer (finite words), 32–35, 40, 42, 50, 54–64, 67, 70–73, 80–83, 85, 88, 89,

94, 95, 100–102, 104, 107, 112, 113, 119, 128, 132, 134, 135, 169, 189, 201, 203, 213, 214, 225,
226, 229, 232, 236, 267, 273, 274

270 INDEX

eigenvalue, 168, 184–187
extension of a function, 196, 200, 202, 203, 206, 235, 239–241, 244, 266, 267

factorization forest, 40, 66, 67, 69, 73–77, 80, 85, 87, 89, 90, 92–98, 100, 103, 129, 132, 137–143, 146,
150, 157–164, 172, 173, 187, 188, 227, 228, 230, 267, 274

finite lookaheads (infinite words), 209–211, 213, 214, 220–223, 250
finite lookarounds (infinite words), 41, 194, 207–210, 220, 221, 225–227, 240, 241, 244, 246, 249, 250,

260, 261
forward factorization forest, 227–232, 234, 235, 275
functional transducer, 33, 52, 54, 59, 197, 200, 202, 204

Hadamard product, 129, 130, 148, 149, 163, 171
head transducer, 60–62, 80–83, 86–90, 94–96, 100–102, 107, 113, 148, 176

iterator, 70, 71, 77, 135–137, 141–143, 154, 155, 159, 160

Kleene star for series, 129, 130, 149

last pebble transducer (finite words), 37, 39, 40, 42, 66, 80, 82–85, 90–94, 97, 99, 100, 106, 119, 120, 124,
128, 132, 137, 145, 274

last-last pebble transducer (finite words), 97
layered, 100, 103, 109–115, 117, 236, 274
logical interpretations, 64, 66, 82, 126, 169
logical transductions, 58, 64, 169, 204, 206
longest common prefix, 45, 205, 206, 242, 250, 263, 265, 266
lookarounds (finite words), 57, 58, 62, 81, 83, 87–89, 92, 95, 96, 101, 103, 112, 128, 171, 201–203, 210,

213, 215, 225
lookbehinds (infinite words), 209, 210, 213

marble transducer (finite words), 38–42, 66, 99–103, 106, 109, 111–113, 124, 127–129, 145, 169–171,
173, 176, 208, 274

minimal weighted automaton, 132, 184–187
morphic infinite word, 236, 237
Muller final condition, 194, 196, 198, 201, 204
mutual prefixes, 45, 245, 247, 248, 250, 252, 255, 259

non-deterministic two-way transducer (finite words), 59
normalized two-way transducer (finite words), 56–58, 60, 62, 69, 71, 80, 82, 100, 102, 108, 128, 274
normalized two-way transducer (infinite words), 213, 225

one-way deterministic transducer (finite words), 33, 42, 50–52, 54, 195, 230
one-way deterministic transducer (infinite words), 36, 193, 195–198, 200, 209, 212, 227, 230, 239–241,

246, 249, 250, 255–261, 264
one-way non-deterministic transducer (finite words), 33, 35, 42, 50–54, 58, 59, 197, 199
one-way non-deterministic transducer (infinite words), 36, 38, 193, 195, 197–202, 206, 239–244, 250,

266
order-preserving logical transductions, 53, 198, 199
origin semantics, 35, 56–59, 61, 62, 81, 82, 101, 102, 113, 114, 169, 171, 174, 220

parallel productive one-way transducer, 243, 246, 259
Parikh image, 69
pebble automaton, 32, 59, 60, 63

Jump to contents

INDEX 271

pebble transducer (finite words), 33–35, 38–42, 50, 58–67, 70, 76, 77, 79–85, 97–101, 103, 106, 107,
119, 120, 123–125, 127, 128, 145, 147, 169, 170, 208, 273, 274

permutable transducer, 38, 151, 152, 154–157, 159, 160, 165, 166, 180, 182, 188
polyblind function (finite words), 80–82, 84, 101, 146, 147
polyregular function (finite words), 33–35, 50, 59, 61, 63–66, 73, 79, 80, 82, 84, 85, 114, 120, 124, 125,

144, 151, 169
productive one-way transducer, 243, 266
prophetic automaton (infinite words), 199
prophetic function (infinite words), 199, 200
pumpable transducer, 37, 38, 85–87, 89–92, 96–98, 132, 142, 143, 151, 152, 154, 188, 274

rational function (finite words), 33, 35, 41, 50, 52–54, 56, 58, 59, 63, 74, 75, 87, 101, 139, 149, 169, 187,
198, 199, 227, 267

rational function (infinite words), 36, 42, 193, 194, 197–200, 202–204, 206, 211, 228, 239–243, 265–267
real-time transducer, 51–53, 197, 198, 240, 242, 243, 275
recursive last pebble transducer, 120
recursive marble transducer (finite words), 38–40, 99, 100, 102–107, 109, 119, 120, 169, 214, 274
recursive pebble transducer (finite words), 119, 120
regular function (finite words), 33–35, 40, 41, 50, 56, 58, 59, 63, 64, 70, 71, 73, 82, 83, 85, 100–102, 106,

109, 111, 112, 125, 143, 147, 149, 166, 169, 173, 174, 188, 189, 225, 231, 236, 250, 267
regular function (infinite words), 36, 41, 42, 194, 201, 203–208, 211, 212, 227, 228, 239, 266, 267
repetitive function, 38, 40, 146, 149–157, 165, 166, 168, 172, 180, 182
residual automaton (finite words), 168, 173, 174, 176, 178
residual of a function (finite words), 174, 175, 179, 180, 183, 184, 188
residual of a language (finite words), 174, 175, 221, 222
residual transducer (finite words), 41, 168, 173, 174, 177–180, 182–184, 188, 274
rigid set, 255–258

semiring, 40, 114, 115, 124, 129, 184
sequential function (finite words), 33, 35, 50–54, 58, 63, 75, 164, 195, 199, 250
sequential function (infinite words), 36, 193–200, 208, 209, 212, 227, 229, 235, 241, 243, 254, 260, 262,

266
smooth function, 38, 41, 168, 171–173, 180–184, 186–188
star-free function, 35, 41, 42, 166–174, 180–184, 186–189, 267
star-free language, 41, 54, 167, 168, 170–172, 181, 183
streaming string transducer (finite words), 34, 40–42, 59, 100, 103–107, 109–116, 119, 127, 211, 215,

236, 267
streaming string transducer (infinite words), 41, 42, 207–209, 211–215, 217, 220–222, 227, 236, 237,

240, 248, 249, 261–266
suffix deterministic transducer (finite words), 174, 176–178, 180, 182–184, 274

transition morphism, 67, 68, 70–73, 85–87, 90–92, 95, 97, 128, 134–136, 138, 139, 141–143, 153–155,
159, 165, 170, 182, 185, 188, 214, 226, 229, 231, 232, 235

twinning property, 35, 38, 54, 200, 206, 241, 242, 266
two-way deterministic transducer (infinite words), 36, 38, 41, 56, 73, 194, 201–203, 205–214, 220, 221,

225–229, 231, 232, 235, 240, 241, 244, 246

ultimately periodic infinite word, 236, 237
unambiguous transducer, 51–53, 116, 197–199, 240, 242, 243, 245, 250, 275
uniform continuity, 239, 243, 265, 266

Jump to contents

272 INDEX

weakly compatible set, 266
weighted automaton (finite words), 40, 100, 114–119, 129, 131, 132, 168, 173, 184–187

Jump to contents

List of Figures

1 Représentation du problème d’apparence entre les classes P et P’. 14

2 Fonctionnement d’un automate déterministe à un sens. 15

3 Exécutions d’un automate unidirectionnel et d’un automate bidirectionnel. 16

4 Fonctionnement d’un transducteur bidirectionnel déterministe. 17

5 Classes de fonctions calculées par les transducteurs de mots finis. 18

6 Exécution d’un transducteur à 3 jetons. 19

7 Classes de fonctions calculées sur les mots infinis. 21

10 Comportement de variantes des transducteurs à jetons. 23

11 Classes de fonctions calculées par des variantes des transducteurs à jetons. 24

12 Classes de fonctions de mots infinis. 26

1 Global picture of a class membership problem form P to P’. 30

2 Behavior of a finite one-way deterministic automaton. 31

3 Behavior of one-way and two-way automata. 32

4 Behavior of a two-way deterministic transducer. 33

5 Classes of functions computed by transducers of finite words. 33

6 Computation of a 3-pebble transducer. 34

7 Classes of functions over infinite words. 36

10 Behavior of variants of pebble transducers. 39

11 Classes of functions computed by variants of pebble transducers. 39

12 Classes of functions of infinite words. 41

13 Dependency graph of this manuscript. 44

1.1 Classes of functions over finite words described in Chapter 1. 49

1.2 Behavior of a one-way deterministic transducer. 50

1.5 Functions and relations computed by 1DT and 1NT. 51

1.14 Behavior of a bimachine when producing λ(Li, u[i], Ri). 53

1.18 Behavior of a two-way deterministic transducer. 55

274 LIST OF FIGURES

1.20 Initial run of a two-way transducer. 55

1.35 Syntax of a 3-pebble transducer with input alphabetA. 60

1.37 Behavior of a 3-pebble transducer that calls submachines. 61

2.1 Extended transition function of a 2DT. 68

2.4 Crossing sequence over I of a normalized 2DT. 69

2.14 Shape of a run along a block of idempotents factors. 72

2.20 A factorization forestF ∈ Forestsµ((−1)(−1)0(−1)00000000). 74

2.26 Iterable nodes and skeleton of the root for the µ-forest from Figure 2.20. 76

2.30 Nodes that observe • and that • observes. 76

2.34 Construction of Lemma 2.33 for two independent nodes t1≼t2. 77

3.1 Classes of functions computed by blind pebble transducers. 79

3.3 Behavior of a blind 3-pebble transducer. 81

3.9 Behavior of a last 3-pebble transducer. 83

3.18 Pumpability in a blind 2-pebble transducer. 86

3.24 Duplicating a subtree inF so that t′ℓ1 and t
′
ℓ2
become independent. 90

3.26 Pumpability in a last 2-pebble transducer. 91

3.31 Slicing of the n-run ρ with respect to i andF . 94

4.1 Classes of functions studied in Chapters 3 and 4. 99

4.3 Behavior of a 3-marble transducer. 101

4.24 Structure of a right-to-right run starting in configuration (p0, |⊢ua|). 108

4.25 Classes of functions computed by marble transducers and recursive marble transducers. 109

4.32 Update of the registers in a 3-layered DSST. 111

4.48 Patterns that create unboundedness in a trimN-automaton. 117

5.1 Classes of functions studied in Chapter 5 with S := Z orN. 123

6.1 Classes of functions studied in Chapter 6 for S = N. 145

6.21 Relationship between S-polyregular and S-polyblind functions for S = N and Z. . . . 152

6.27 Productions which must be equal in Definition 6.28, with x = 3 and σ = (3, 1, 2). . . 154

6.33 Proof idea for Lemma 6.34 with x = 3 and σ = (3, 1, 2). 156

6.38 A set of independent nodes and its architecture. 158

7.1 Classes of Z-polyregular functions studied in Chapter 7. 167

7.33 Two suffix deterministic transducers computing 1aA∗ 177

7.38 Two residual transducers. 178

7.41 Example of a partial execution of Algorithm 7.40. 179

Jump to contents

LIST OF FIGURES 275

8.1 Classes of functions over infinite words described in Chapter 8. 193

8.7 Functions computed by 1DTω . 196

8.17 Functions computed by unambiguous and real-time 1NTω 198

8.39 Behavior of a Turing machine of infinite words. 205

9.1 Equivalent models presented in Chapter 9 for deterministic regular functions. 208

9.35 Structure of an initial run. 224

9.40 Product construction for the composition of 2DTω . 226

9.47 Shape of a run along a block in a forward factorization forest. 229

10.9 Twinning property described in Lemma 10.8. 243

10.14Compatible sets, pre-steps and steps. 244

10.25A pointy θ-tree of value θ6 (vertical slices are dashed). 247

10.27A possible value of buildTrees(buildSteps(u)) when f(u) = θ1θ2θ2θ3 · · · 248

10.29Covering the future with a compatible set. 249

10.37 Situation of Lemma 10.36 with advuJ,C(p)prodvC,D(q) ⊑ τθω 252

10.54Transformation when all branches produce a τ at some point. 261

10.57The three possible cases of vertical slices. 262

Jump to contents

276 LIST OF FIGURES

Jump to contents

Bibliography

[AC10] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In 30th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2010. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. https://doi.
org/10.4230/LIPIcs.FSTTCS.2010.1.

[AFR14] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2014. Association for Computing Machinery, 2014. http://arxiv.org/abs/1402.
3021.

[AFT12] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite
strings. In 27th Annual IEEE Symposium on Logic in Computer Science,LICS 2012. IEEE Com-
puter Society, 2012. https://doi.org/10.1109/LICS.2012.18.

[AHU69] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. A general theory of transla-
tion. Mathematical Systems Theory, 3(3):193–221, 1969. https://doi.org/10.1007/
BF01703920.

[AK20] Shaull Almagor and Orna Kupferman. Good-enough synthesis. In 32nd International Con-
ference on Computer Aided Verification, CAV 2020, pages 541–563. Springer, 2020. https:
//arxiv.org/abs/2109.03594.

[Bas17] Félix Baschenis. Minimizing resources for regular word transductions. PhD thesis, University
of Bordeaux, France, 2017. https://tel.archives-ouvertes.fr/tel-01680357.

[BC00] Marie-Pierre Béal and Olivier Carton. Determinization of transducers over infinite words.
In 27th International Colloquium on Automata, Languages, and Programming, ICALP 2000.
Springer, 2000. https://doi.org/10.1007/3-540-45022-X_47.

[BC02] Marie-Pierre Béal and Olivier Carton. Determinization of transducers over finite and in-
finite words. Theoretical computer science, 289(1):225–251, 2002. https://doi.org/10.
1016/S0304-3975(01)00271-7.

[BC04] Marie-Pierre Béal and Olivier Carton. Determinization of transducers over infinite words:
the general case. Theory of Computing Systems, 37(4):483–502, 2004. https://doi.org/
10.1007/s00224-003-1014-9.

[BCPS03] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring
transducers: an efficient procedure for deciding functionality and sequentiality. Theoretical
Computer Science, 292(1):45–63, 2003. https://doi.org/10.1016/S0304-3975(01)
00214-6.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://arxiv.org/abs/1402.3021
http://arxiv.org/abs/1402.3021
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.1007/BF01703920
https://doi.org/10.1007/BF01703920
https://arxiv.org/abs/2109.03594
https://arxiv.org/abs/2109.03594
https://tel.archives-ouvertes.fr/tel-01680357
https://doi.org/10.1007/3-540-45022-X_47
https://doi.org/10.1016/S0304-3975(01)00271-7
https://doi.org/10.1016/S0304-3975(01)00271-7
https://doi.org/10.1007/s00224-003-1014-9
https://doi.org/10.1007/s00224-003-1014-9
https://doi.org/10.1016/S0304-3975(01)00214-6
https://doi.org/10.1016/S0304-3975(01)00214-6

278 BIBLIOGRAPHY

[BDK18] Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and first-
order list functions. In 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018. Association for Computing Machinery, 2018. http://arxiv.org/abs/1803.
06168.

[BDSW17] Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2017. Association for Computing Machinery, 2017. https://doi.org/10.
1109/LICS.2017.8005101.

[Bel05] Jason P. Bell. A gap result for the norms of semigroups of matrices. Linear algebra and its
applications, pages 101–110, 2005. https://doi.org/10.1016/j.laa.2004.12.007.

[Ber13] Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.

[BGMP18] Félix Baschenis, OlivierGauwin, AncaMuscholl, andGabriele Puppis. One-way definability
of two-way word transducers. Logical Methods in Computer Science, 14, 2018. https://
doi.org/10.23638/LMCS-14(4:22)2018.

[BKL19] Mikolaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-string interpretations with
polynomial-size output. In 46th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. http:
//arxiv.org/abs/1905.13190.

[Boj09] Mikołaj Bojańczyk. Factorization forests. In 13th International Conference on Devel-
opments in Language Theory, DLT 2009. Springer, 2009. http://doi.org/10.1007/
978-3-642-02737-6_1.

[Boj14] Mikołaj Bojańczyk. Transducers with origin information. In 41th International Colloquium
on Automata, Languages, and Programming, ICALP 2014. Springer, 2014. http://arxiv.
org/abs/1309.6124.

[Boj18] Mikołaj Bojańczyk. Polyregular functions. arXiv preprint, 2018. http://arxiv.org/
abs/1810.08760.

[Boj19] Mikołaj Bojańczyk. The hilbert method for transducer equivalence. ACM SIGLOG News,
6(1):5–17, 2019. https://doi.org/10.1145/3313909.3313911.

[Boj22] Mikołaj Bojańczyk. Transducers of polynomial growth. In 37th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2022, pages 1–27. Association for ComputingMa-
chinery, 2022. https://doi.org/10.1145/3531130.3533326.

[Boj23a] Mikołaj Bojańczyk. Folding interpretations. In 38th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2023. Association for Computing Machinery, 2023. https://
doi.org/10.48550/arXiv.2301.05101.

[Boj23b] Mikołaj Bojańczyk. On the growth rate of polyregular functions. In 38th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2023. Association for Computing Machinery,
2023. https://doi.org/10.48550/arXiv.2212.11631.

[BP09] Mário JJ Branco and Jean-Éric Pin. Equations defining the polynomial closure of a lattice of
regular languages. In 36th International Colloquium on Automata, Languages, and Programming,
ICALP 2009. Springer, 2009. http://doi.org/10.1007/978-3-642-02930-1_10.

[BR11] Jean Berstel and Christophe Reutenauer. Noncommutative rational series with applications.
Cambridge University Press, 2011.

Jump to contents

http://arxiv.org/abs/1803.06168
http://arxiv.org/abs/1803.06168
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1016/j.laa.2004.12.007
https://doi.org/10.23638/LMCS-14(4:22)2018
https://doi.org/10.23638/LMCS-14(4:22)2018
http://arxiv.org/abs/1905.13190
http://arxiv.org/abs/1905.13190
http://doi.org/10.1007/978-3-642-02737-6_1
http://doi.org/10.1007/978-3-642-02737-6_1
http://arxiv.org/abs/1309.6124
http://arxiv.org/abs/1309.6124
http://arxiv.org/abs/1810.08760
http://arxiv.org/abs/1810.08760
https://doi.org/10.1145/3313909.3313911
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.48550/arXiv.2301.05101
https://doi.org/10.48550/arXiv.2301.05101
https://doi.org/10.48550/arXiv.2212.11631
http://doi.org/10.1007/978-3-642-02930-1_10

BIBLIOGRAPHY 279

[BR18] Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function
expressions. In 22nd International Conference on Developments in Language Theory, DLT 2018.
Springer, 2018. https://doi.org/10.1007/978-3-319-98654-8_8.

[BS20] Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite
alphabets. In 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.
4230/LIPIcs.ICALP.2020.113.

[BSSS06] Mikołaj Bojańczyk,Mathias Samuelides, Thomas Schwentick, and Luc Segoufin. Expressive
power of pebble automata. In 33rd International Colloquium on Automata, Languages, and
Programming, ICALP 2006. Springer, 2006. https://doi.org/10.1007/11786986_15.

[Büc60] Julius RichardBüchi. Weak second-order arithmetic and finite automata.Mathematical Logic
Quarterly, 6(1-6):66–92, 1960. https://doi.org/10.1002/malq.19600060105.

[Büc62] Julius Richard Büchi. On a decision method in restricted second-order arithmetic. In Inter-
national Congress on Logic, Mathematics, and Philosophy of Science. Standford University Press,
1962. https://doi.org/10.1007/978-1-4613-8928-6_23.

[Car10] Olivier Carton. Right-sequential functions on infinite words. In 5th International Computer
Science Symposium in Russia, CSR 2010. Springer, 2010. https://doi.org/10.1007/
978-3-642-13182-0_9.

[Car14] Olivier Carton. Langages formels: calculabilité et complexité. Vuibert, 2014.

[CCP17] Michaël Cadilhac, Olivier Carton, and Charles Paperman. Continuity and rational func-
tions. In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. http://arxiv.org/
abs/1802.10555.

[CD15] Olivier Carton and Luc Dartois. Aperiodic two-way transducers and fo-transductions.
In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015. https://arxiv.org/abs/2103.15651.

[CD22] Olivier Carton and Gaëtan Douéneau-Tabot. Continuous rational functions are determ-
inistic regular. In 47th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. https:
//doi.org/10.48550/arXiv.2204.11235.

[CDFW23] OlivierCarton, GaëtanDouéneau-Tabot, Emmanuel Filiot, andSarahWinter. Deterministic
regular functions of infinite words. In 50th International Colloquium on Automata, Languages,
and Programming, ICALP 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
https://doi.org/10.48550/arXiv.2302.06672.

[CDL23] ThomasColcombet, GaëtanDouéneau-Tabot, andAliaumeLopez. Z-polyregular functions.
In 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2023. Association
for Computing Machinery, 2023. https://doi.org/10.48550/arXiv.2207.07450.

[CG99] Christian Choffrut and Serge Grigorieff. Uniformization of rational relations. In Jewels are
Forever: Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages 59–71.
Springer, 1999. https://doi.org/10.1007/978-3-642-60207-8_6.

[Cho77] Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. Theoretical Computer Science, 5(3):325–337,
1977. https://doi.org/10.1016/0304-3975(77)90049-4.

Jump to contents

https://doi.org/10.1007/978-3-319-98654-8_8
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.1007/11786986_15
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-3-642-13182-0_9
https://doi.org/10.1007/978-3-642-13182-0_9
http://arxiv.org/abs/1802.10555
http://arxiv.org/abs/1802.10555
https://arxiv.org/abs/2103.15651
https://doi.org/10.48550/arXiv.2204.11235
https://doi.org/10.48550/arXiv.2204.11235
https://doi.org/10.48550/arXiv.2302.06672
https://doi.org/10.48550/arXiv.2207.07450
https://doi.org/10.1007/978-3-642-60207-8_6
https://doi.org/10.1016/0304-3975(77)90049-4

280 BIBLIOGRAPHY

[Cho03] Christian Choffrut. Minimizing subsequential transducers: a survey. Theoretical Com-
puter Science, 292(1):131–144, 2003. https://doi.org/10.1016/S0304-3975(01)
00219-5.

[Cho17] Christian Choffrut. An hadamard operation on rational relations. Theoretical Computer
Science, 664:78–90, 2017. https://doi.org/10.1016/j.tcs.2015.10.042.

[CJ77] Michal P. Chytil and Vojtěch Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In 4th International Colloquium on Automata, Languages, and
Programming, ICALP 1977, pages 135–147. Springer, 1977. https://doi.org/10.1007/
3-540-08342-1_11.

[CK86] Karel Culík II and Juhani Karhumäki. The equivalence of finite valued transducers (on hdt0l
languages) is decidable. Theoretical Computer Science, 47:71–84, 1986. https://doi.org/
10.1016/0304-3975(86)90134-9.

[CL11] Arnaud Carayol and Christof Löding. Uniformization in automata theory. In 14th Congress
of Logic, Methodology and Philosophy of Science, CLMPST 2011, 2011.

[CM03] OlivierCarton andMaxMichel. Unambiguous büchi automata. Theoretical Computer Science,
297(1-3):37–81, 2003. https://doi.org/10.1016/S0304-3975(02)00618-7.

[Col07] Thomas Colcombet. A combinatorial theorem for trees. In 34th International Colloquium on
Automata, Languages, and Programming, ICALP 2007. Springer, 2007. https://doi.org/
10.1007/978-3-540-73420-8_77.

[Col10] Thomas Colcombet. Factorization forests for infinite words and applications to countable
scattered linear orderings. Theoretical Computer Science, 411(4-5):751–764, 2010. https:
//doi.org/10.1016/j.tcs.2009.10.013.

[Col11] Thomas Colcombet. Green’s relations and their use in automata theory. In 5th International
Conference on Language and Automata Theory and Applications, LATA 2011. Springer, 2011.
https://doi.org/10.1007/978-3-642-21254-3_1.

[CP81] Karel Culík II and Jan K. Pachl. Equivalence problems for mappings on infinite
strings. Information and Control, 49(1):52–63, 1981. https://doi.org/10.1016/
S0019-9958(81)90444-7.

[CP17] ThomasColcombet andDaniela Petrisan. Automataminimization: a functorial approach. In
7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. http://arxiv.org/abs/1711.03063.

[CvGM22] Thomas Colcombet, Sam van Gool, and Rémi Morvan. First-order separation over count-
able ordinals. In 25th International Conference on Foundations of Software Science and Compu-
tation Structures, FoSSaCS 2022. Springer, 2022. https://arxiv.org/abs/2201.03089.

[DFG20] Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register transducers are
marble transducers. In 45th International Symposium onMathematical Foundations of Computer
Science, MFCS 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https:
//arxiv.org/abs/2005.01342.

[DFJL17] Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. http://arxiv.org/abs/
1702.07157.

Jump to contents

https://doi.org/10.1016/S0304-3975(01)00219-5
https://doi.org/10.1016/S0304-3975(01)00219-5
https://doi.org/10.1016/j.tcs.2015.10.042
https://doi.org/10.1007/3-540-08342-1_11
https://doi.org/10.1007/3-540-08342-1_11
https://doi.org/10.1016/0304-3975(86)90134-9
https://doi.org/10.1016/0304-3975(86)90134-9
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.1007/978-3-540-73420-8_77
https://doi.org/10.1007/978-3-540-73420-8_77
https://doi.org/10.1016/j.tcs.2009.10.013
https://doi.org/10.1016/j.tcs.2009.10.013
https://doi.org/10.1007/978-3-642-21254-3_1
https://doi.org/10.1016/S0019-9958(81)90444-7
https://doi.org/10.1016/S0019-9958(81)90444-7
http://arxiv.org/abs/1711.03063
https://arxiv.org/abs/2201.03089
https://arxiv.org/abs/2005.01342
https://arxiv.org/abs/2005.01342
http://arxiv.org/abs/1702.07157
http://arxiv.org/abs/1702.07157

BIBLIOGRAPHY 281

[DFKL20] Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, andNathan Lhote. Synthesis
of computable regular functions of infinite words. In 31st International Conference on Con-
currency Theory, CONCUR 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
https://doi.org/10.4230/LIPIcs.CONCUR.2020.43.

[DFL18] Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for word transductions with syn-
thesis. In 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018. Asso-
ciation for Computing Machinery, 2018.

[DG19] Manfred Droste and Paul Gastin. Aperiodic weighted automata and weighted first-order
logic. In 44th International Symposium onMathematical Foundations of Computer Science, MFCS
2019, pages 76:1–76:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. http:
//arxiv.org/abs/1902.08149.

[DGK18] Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular transducer ex-
pressions for regular transformations. In 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, pages 315–324. Association for Computing Machinery, 2018.
https://doi.org/10.1145/3209108.3209182.

[DGK21] Luc Dartois, Paul Gastin, and Shankara Narayanan Krishna. Sd-regular transducer expres-
sions for aperiodic transformations. In 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021. IEEE, 2021. https://arxiv.org/abs/2101.07130.

[DJR18] Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic string transducers. Interna-
tional Journal of Foundations of Computer Science, 29(5):801–824, 2018. https://doi.org/
10.1142/S0129054118420054.

[Dou18] Gaëtan Douéneau-Tabot. On the complexity of infinite advice strings. In 45th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2018. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.ICALP.
2018.122.

[Dou21] Gaëtan Douéneau-Tabot. Pebble transducers with unary output. In 46th International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2021. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. https://arxiv.org/abs/2104.14019.

[Dou22] Gaëtan Douéneau-Tabot. Hiding pebbles when the output alphabet is unary. In 49th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2022. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. https://arxiv.org/abs/2112.10212.

[Dou23] Gaëtan Douéneau-Tabot. Pebbleminimization: the last theorems. In 26th International Con-
ference on Foundations of Software Science and Computation Structures, FoSSaCS 2023. Springer,
2023. https://doi.org/10.48550/arXiv.2210.02426.

[Dur13] Fabien Durand. Decidability of the hd0l ultimate periodicity problem. RAIRO Theoretical
Informatics and Applications, 47(2):201–214, 2013. http://arxiv.org/abs/1111.3268.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Tree-walking pebble automata. Jewels are
Forever: Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages 72–83,
1999. https://doi.org/10.1007/978-3-642-60207-8_7.

[EH01] Joost Engelfriet andHendrik JanHoogeboom. MSOdefinable string transductions and two-
way finite-state transducers. ACM Transactions on Computational Logic (TOCL), 2(2):216–
254, 2001. https://arxiv.org/abs/cs/9906007.

Jump to contents

https://doi.org/10.4230/LIPIcs.CONCUR.2020.43
http://arxiv.org/abs/1902.08149
http://arxiv.org/abs/1902.08149
https://doi.org/10.1145/3209108.3209182
https://arxiv.org/abs/2101.07130
https://doi.org/10.1142/S0129054118420054
https://doi.org/10.1142/S0129054118420054
https://doi.org/10.4230/LIPIcs.ICALP.2018.122
https://doi.org/10.4230/LIPIcs.ICALP.2018.122
https://arxiv.org/abs/2104.14019
https://arxiv.org/abs/2112.10212
https://doi.org/10.48550/arXiv.2210.02426
http://arxiv.org/abs/1111.3268
https://doi.org/10.1007/978-3-642-60207-8_7
https://arxiv.org/abs/cs/9906007

282 BIBLIOGRAPHY

[EH06] Joost Engelfriet and Hendrik Jan Hoogeboom. Nested pebbles and transitive closure. In
23th International Symposium onTheoretical Aspects of Computer Science, STACS 2006. Springer,
2006. http://arxiv.org/abs/cs/0703079.

[EHS07] Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. Xml transformation by tree-
walking transducers with invisible pebbles. In 26th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2007. Association for ComputingMachinery,
2007. http://arxiv.org/abs/1809.05730.

[EHV99] Joost Engelfriet, Hendrik Jan Hoogeboom, and Jan-Pascal Van Best. Trips on trees. Acta
Cybernetica, 14(1):51–64, 1999. https://cyber.bibl.u-szeged.hu/index.php/
actcybern/article/view/3510.

[Eil74] Samuel Eilenberg. Automata, languages, and machines (A). Academic press, 1974.

[EIM21] Joost Engelfriet, Kazuhiro Inaba, and Sebastian Maneth. Linear-bounded composition of
tree-walking tree transducers: linear size increase and complexity. Acta Informatica, 58:95–
152, 2021. http://arxiv.org/abs/1904.09203.

[Elg61] Calvin C Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 98(1):21–51, 1961. https://doi.org/10.
2307/1993511.

[EM65] CalvinC. Elgot and JorgeE.Mezei. On relations defined by generalized finite automata. IBM
Journal of Research and Development, 9(1):47–68, 1965. https://doi.org/10.1147/rd.
91.0047.

[EM02] Joost Engelfriet and Sebastian Maneth. Two-way finite state transducers with nested
pebbles. In 27th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2002. Springer, 2002. https://doi.org/10.1007/3-540-45687-2_19.

[Eng81] Joost Engelfriet. Three hierarchies of transducers. Mathematical Systems Theory, 15(1):95–
125, 1981. https://doi.org/10.1007/BF01786975.

[Eng15] Joost Engelfriet. Two-way pebble transducers for partial functions and their com-
position. Acta Informatica, 52(7-8):559–571, 2015. https://doi.org/10.1007/
s00236-015-0224-3.

[ERS78] Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers, l systems and
two-way machines. In 10th Annual ACM Symposium on Theory of Computing, STOC 1978,
pages 66–74, 1978. https://doi.org/10.1145/800133.804333.

[FCL10] Charles N. Fischer, Ron K. Cytron, and Richard J. Jr. LeBlanc. Crafting a compiler. Addison-
Wesley, 2010.

[FGL19] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Logical and algebraic character-
izations of rational transductions. Logical methods in computer science, 15, 2019. http:
//arxiv.org/abs/1705.03726.

[FGLM18] Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, and AncaMuscholl. On canonical models
for rational functions over infinite words. In 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2018. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.FSTTCS.
2018.30.

Jump to contents

http://arxiv.org/abs/cs/0703079
http://arxiv.org/abs/1809.05730
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3510
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3510
http://arxiv.org/abs/1904.09203
https://doi.org/10.2307/1993511
https://doi.org/10.2307/1993511
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1007/3-540-45687-2_19
https://doi.org/10.1007/BF01786975
https://doi.org/10.1007/s00236-015-0224-3
https://doi.org/10.1007/s00236-015-0224-3
https://doi.org/10.1145/800133.804333
http://arxiv.org/abs/1705.03726
http://arxiv.org/abs/1705.03726
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.30
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.30

BIBLIOGRAPHY 283

[FGRS13] Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. From two-
way to one-way finite state transducers. In 28th Annual ACM/IEEE Symposium on Lo-
gic in Computer Science, LICS 2013. Association for Computing Machinery, 2013. http:
//arxiv.org/abs/1301.5197.

[Fil15] Emmanuel Filiot. Logic-automata connections for transformations. In 6th Indian Conference
on Logic and Its Applications, ICLA 2015, Mumbai. Springer, 2015. https://doi.org/10.
1007/978-3-662-45824-2_3.

[FKT14] Emmanuel Filiot, ShankaraNarayananKrishna, andAshutoshTrivedi. First-order definable
string transformations. In Venkatesh Raman and S. P. Suresh, editors, 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2014. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. http://arxiv.org/
abs/1406.7824.

[FLW20] Emmanuel Filiot, Christof Löding, and Sarah Winter. Synthesis from weighted specifica-
tions with partial domains over finite words. In 40th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2020. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. https://arxiv.org/abs/2103.05550.

[FR17] Emmanuel Filiot and Pierre-Alain Reynier. Copyful streaming string transducers. In 11th
International Workshop on Reachability Problems, RP 2017. Springer, 2017. https://doi.
org/10.1007/978-3-319-67089-8_6.

[FT08] Emmanuel Filiot and Sophie Tison. Regular n-ary queries in trees and variable independ-
ence. In 5th IFIP International ConferenceOnTheoretical Computer Science, TCS 2008. Springer,
2008. https://doi.org/10.1007/978-0-387-09680-3_29.

[FW21] Emmanuel Filiot and Sarah Winter. Synthesizing computable functions from rational spe-
cifications over infinite words. In 41st IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2021. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. https://arxiv.org/abs/2103.05674.

[GH96] Noa Globerman and David Harel. Complexity results for two-way and multi-pebble auto-
mata and their logics. Theoretical Computer Science, 169(2):161–184, 1996. https://doi.
org/10.1016/S0304-3975(96)00119-3.

[Gin62] Seymour Ginsburg. An Introduction to Mathematical Machine Theory. Addison-Wesley, 1962.

[Gir86] Françoise Gire. Two decidability problems for infinite words. Information Processing Letters,
22(3):135–140, 1986. https://doi.org/10.1016/0020-0190(86)90058-X.

[GR66] Seymour Ginsburg and Gene F. Rose. A characterization of machine mappings.
Canadian Journal of Mathematics, 18:381–388, 1966. https://doi.org/10.4153/
cjm-1966-040-3.

[Gur80] EitanM.Gurari. The equivalence problem for deterministic two-way sequential transducers
is decidable. In 21st Annual Symposium on Foundations of Computer Science, FOCS 1980. IEEE
Computer Society, 1980. https://doi.org/10.1109/SFCS.1980.46.

[Har72] Juris Hartmanis. On non-determinancy in simple computing devices. Acta Informatica,
1(4):336–344, 1972. https://doi.org/10.1007/BF00289513.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 3rd Edition. Addison-Wesley, 2007.

Jump to contents

http://arxiv.org/abs/1301.5197
http://arxiv.org/abs/1301.5197
https://doi.org/10.1007/978-3-662-45824-2_3
https://doi.org/10.1007/978-3-662-45824-2_3
http://arxiv.org/abs/1406.7824
http://arxiv.org/abs/1406.7824
https://arxiv.org/abs/2103.05550
https://doi.org/10.1007/978-3-319-67089-8_6
https://doi.org/10.1007/978-3-319-67089-8_6
https://doi.org/10.1007/978-0-387-09680-3_29
https://arxiv.org/abs/2103.05674
https://doi.org/10.1016/S0304-3975(96)00119-3
https://doi.org/10.1016/S0304-3975(96)00119-3
https://doi.org/10.1016/0020-0190(86)90058-X
https://doi.org/10.4153/cjm-1966-040-3
https://doi.org/10.4153/cjm-1966-040-3
https://doi.org/10.1109/SFCS.1980.46
https://doi.org/10.1007/BF00289513

284 BIBLIOGRAPHY

[Hop71] John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Theory
of Machines and Computations, pages 189–196. Academic Press, 1971. https://doi.org/
10.1016/B978-0-12-417750-5.50022-1.

[HU67] John E. Hopcroft and Jeffrey D. Ullman. An approach to a unified theory of automata. In 8th
Annual Symposium on Switching and Automata Theory, SWAT 1967. IEEE Computer Society,
1967. https://doi.org/10.1109/FOCS.1967.4.

[Iba71] Oscar H Ibarra. Characterizations of some tape and time complexity classes of turing ma-
chines in terms of multihead and auxiliary stack automata. Journal of Computer and System
Sciences, 5(2):88–117, 1971. https://doi.org/10.1016/S0022-0000(71)80029-6.

[Jec21] Ismaël Jecker. A ramsey theorem for finite monoids. In 38th International Symposium on
Theoretical Aspects of Computer Science, STACS 2021. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. https://arxiv.org/abs/2101.05895.

[KA10] Ondrej Klima and Jorge Almeida. New decidable upper bound of the second level in the
straubing-thérien concatenation hierarchy of star-free languages. Discrete Mathematics and
Theoretical Computer Science, 12:41–58, 2010. https://doi.org/10.46298/dmtcs.
490.

[Kle56] Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Auto-
mata Studies: Annals of Mathematics Studies, 34:3–42, 1956. https://doi.org/10.1515/
9781400882618-002.

[KNP23] Sandra Kiefer, Lê Thành Dung Nguyên, and Cecilia Pradic. Refutations of pebble minimiz-
ation via output languages. arXiv preprint, 2023. https://doi.org/10.48550/arXiv.
2301.09234.

[Knu74] Donald E. Knuth. Structured programming with go to statements. ACMComputing Surveys,
6(4):261–301, 1974. https://doi.org/10.1145/356635.356640.

[Kuf08] Manfred Kufleitner. The height of factorization forests. In 33rd International Symposium on
Mathematical Foundations of Computer Science, MFCS 2008. Springer, 2008. http://doi.
org/10.1007/978-3-540-85238-4_36.

[Leu00] Rainer Leupers. Code optimization techniques for embedded processors - methods, algorithms, and
tools. Kluwer, 2000.

[LLN+11] Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Sławek Staworko, and Marc Tom-
masi. Normalization of sequential top-down tree-to-word transducers. In 5th International
Conference on Language and Automata Theory and Applications, LATA 2011. Springer, 2011.
https://doi.org/10.1007/978-3-642-21254-3_28.

[Mas87] Henry Massalin. Superoptimizer - A look at the smallest program. In Randy H. Katz and
Martin Freeman, editors, 2nd International Conference on Architectural Support for Program-
ming Languages andOperating Systems, ASPLOS 1987. Association for ComputingMachinery,
1987. doi:10.1145/36206.36194.

[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. The Journal of Symbolic
Logic, 34(1):129–153, 1956. https://doi.org/10.1515/9781400882618-006.

[MP71] RobertMcNaughton andSeymourAPapert. Counter-Free Automata (MIT researchmonograph
no. 65). The MIT Press, 1971.

Jump to contents

https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1109/FOCS.1967.4
https://doi.org/10.1016/S0022-0000(71)80029-6
https://arxiv.org/abs/2101.05895
https://doi.org/10.46298/dmtcs.490
https://doi.org/10.46298/dmtcs.490
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.48550/arXiv.2301.09234
https://doi.org/10.48550/arXiv.2301.09234
https://doi.org/10.1145/356635.356640
http://doi.org/10.1007/978-3-540-85238-4_36
http://doi.org/10.1007/978-3-540-85238-4_36
https://doi.org/10.1007/978-3-642-21254-3_28
https://doi.org/10.1145/36206.36194
https://doi.org/10.1515/9781400882618-006

BIBLIOGRAPHY 285

[MP19] Anca Muscholl and Gabriele Puppis. The many facets of string transducers (invited talk).
In 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019.
SchlossDagstuhl-Leibniz-Zentrum fuer Informatik, 2019. https://doi.org/10.4230/
LIPIcs.STACS.2019.2.

[MPR08] Mehryar Mohri, Fernando Pereira, and Michael Riley. Speech recognition with weighted
finite-state transducers. Springer Handbook of Speech Processing, pages 559–584, 2008.
https://doi.org/10.1007/978-3-540-49127-9_28.

[MS77] Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer
Science, 5(2):101–111, 1977. https://doi.org/10.1016/0304-3975(77)90001-9.

[MSV00] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for xml transformers. In 9th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2000. Associ-
ation for Computing Machinery, 2000. https://doi.org/10.1145/335168.335171.

[Ner58] Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958. https://doi.org/10.2307/2033204.

[NNP21] Lê Thành Dung Nguyên, Camille Noûs, and Cecilia Pradic. Comparison-free polyregular
functions. In 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://arxiv.org/
abs/2105.08358.

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Transactions on Computational Logic (TOCL), 5(3):403–435, 2004.
https://doi.org/10.1145/1013560.1013562.

[Pin84] Jean Eric Pin. Variétés de langages formels. Masson, 1984.

[Pin17] Jean-Éric Pin. The dot-depth hierarchy, 45 years later. The Role of Theory in Computer Sci-
ence - Essays Dedicated to Janusz Brzozowski, pages 177–201, 2017. https://doi.org/10.
1142/9789813148208_0008.

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games.
Elsevier, 2004.

[Pri01] Christophe Prieur. How to decide continuity of rational functions on infinite words.
Theoretical Computer Science, 250(1-2):71–82, 2001. https://doi.org/10.1016/
S0304-3975(99)00115-2.

[Pri02] Christophe Prieur. How to decide continuity of rational functions on infinite words. The-
oretical computer science, 276(1-2):445–447, 2002. Corrective note of [Pri01]. https:
//doi.org/10.1016/S0304-3975(01)00307-3.

[PW97] Jean-Éric Pin and Pascal Weil. Polynomial closure and unambiguous product. Theory of
computing systems, 30:383–422, 1997. http://doi.org/10.1007/BF02679467.

[Roz86] Brigitte Rozoy. Outils et résultats pour les transducteurs boustrophédons. RAIRO Theoret-
ical Informatics and Applications, 20(3):221–250, 1986. https://doi.org/10.1051/ita/
1986200302211.

[RS59] Michael O. Rabin andDana Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3(2):114–125, 1959. https://doi.org/10.1147/rd.32.
0114.

Jump to contents

https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://doi.org/10.1007/978-3-540-49127-9_28
https://doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.1145/335168.335171
https://doi.org/10.2307/2033204
https://arxiv.org/abs/2105.08358
https://arxiv.org/abs/2105.08358
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1142/9789813148208_0008
https://doi.org/10.1142/9789813148208_0008
https://doi.org/10.1016/S0304-3975(99)00115-2
https://doi.org/10.1016/S0304-3975(99)00115-2
https://doi.org/10.1016/S0304-3975(01)00307-3
https://doi.org/10.1016/S0304-3975(01)00307-3
http://doi.org/10.1007/BF02679467
https://doi.org/10.1051/ita/1986200302211
https://doi.org/10.1051/ita/1986200302211
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114

286 BIBLIOGRAPHY

[RS91] Christophe Reutenauer and Marcel-Paul Schützenberger. Minimization of rational word
functions. SIAM Journal on Computing, 20(4):669–685, 1991. https://doi.org/10.
1137/0220042.

[Sak09] Jacques Sakarovitch. Elements of automata theory. Cambridge University Press, 2009.

[Sch61a] Marcel-Paul Schützenberger. On the definition of a family of automata. Information
and Control, 4(2-3):245–270, 1961. https://doi.org/10.1016/S0019-9958(61)
80020-X.

[Sch61b] Marcel-Paul Schützenberger. A remark on finite transducers. Information and Control, 4(2-
3):185–196, 1961. https://doi.org/10.1016/S0019-9958(61)80006-5.

[Sch62] Marcel-Paul Schützenberger. Finite counting automata. Information and Control, 5(2):91–
107, 1962. https://doi.org/10.1016/S0019-9958(62)90244-9.

[Sch65] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Informa-
tion and Control, 8(2):190–194, 1965. https://doi.org/10.1016/S0019-9958(65)
90108-7.

[Sch77] Marcel-Paul Schützenberger. Sur une variante des fonctions séquentielles. Theoret-
ical Computer Science, 4(1):47–57, 1977. https://doi.org/10.1016/0304-3975(77)
90055-X.

[Sco67] Dana Scott. Some definitional suggestions for automata theory. Journal of Computer and
System Sciences, 1(2):187–212, 1967. https://doi.org/10.1016/S0022-0000(67)
80014-X.

[She59] John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198–200, 1959. https://doi.org/10.1147/
rd.32.0198.

[Sim90] Imre Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65–94,
1990. https://doi.org/10.1016/0304-3975(90)90047-L.

[Sip12] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[Smi14] Tim Smith. A pumping lemma for two-way finite transducers. In 39th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2014. Springer, 2014.
https://doi.org/10.1007/978-3-662-44522-8_44.

[Ste67] Richard Edwin Stearns. A regularity test for pushdown machines. Information and Control,
11(3):323–340, 1967. https://doi.org/10.1016/S0019-9958(67)90591-8.

[Str94] Howard Straubing. Finite automata, formal logic, and circuit complexity. Springer, 1994.

[Tho90] WolfgangThomas. Automata on infinite objects. InHandbook of Theoretical Computer Science,
Volume B: FormalModels and Semantics, pages 133–191. Elsevier, 1990. https://doi.org/
10.1016/b978-0-444-88074-1.50009-3.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
Volume 3: Beyond Words, pages 389–455. Springer, 1997. https://doi.org/10.1007/
978-3-642-59126-6_7.

[Tra62] Boris Abramovich Trakhtenbrot. Finite automata and the logic of one-place predicates.
Sibirskii Matematicheskii Zhurnal, 3(1):103–131, 1962.

Jump to contents

https://doi.org/10.1137/0220042
https://doi.org/10.1137/0220042
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0019-9958(61)80006-5
https://doi.org/10.1016/S0019-9958(62)90244-9
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/0304-3975(77)90055-X
https://doi.org/10.1016/0304-3975(77)90055-X
https://doi.org/10.1016/S0022-0000(67)80014-X
https://doi.org/10.1016/S0022-0000(67)80014-X
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1016/0304-3975(90)90047-L
https://doi.org/10.1007/978-3-662-44522-8_44
https://doi.org/10.1016/S0019-9958(67)90591-8
https://doi.org/10.1016/b978-0-444-88074-1.50009-3
https://doi.org/10.1016/b978-0-444-88074-1.50009-3
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-59126-6_7

BIBLIOGRAPHY 287

[VDKT93] Arie Van Deursen, Paul Klint, and Frank Tip. Origin tracking. Journal of Symbolic Computa-
tion, 15(5-6):523–545, 1993. https://doi.org/10.1016/S0747-7171(06)80004-0.

[Wei00] Klaus Weihrauch. Computable analysis: an introduction. Springer, 2000. https://doi.
org/10.1007/978-3-642-56999-9.

[Wil16] Thomas Wilke. Past, present, and infinite future. In 43rd International Colloquium on Auto-
mata, Languages, and Programming, ICALP 2016. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2016. https://doi.org/10.4230/LIPIcs.ICALP.2016.95.

[WK95] Andreas Weber and Reinhard Klemm. Economy of description for single-valued trans-
ducers. Information and Computation, 118(2):327–340, 1995. https://doi.org/10.
1006/inco.1995.1071.

[WS91] AndreasWeber andHelmut Seidl. On the degree of ambiguity of finite automata. Theoretical
Computer Science, 88(2):325–349, 1991. https://doi.org/10.1016/0304-3975(91)
90381-B.

Jump to contents

https://doi.org/10.1016/S0747-7171(06)80004-0
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.4230/LIPIcs.ICALP.2016.95
https://doi.org/10.1006/inco.1995.1071
https://doi.org/10.1006/inco.1995.1071
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1016/0304-3975(91)90381-B

	Introduction en français
	Optimisation de programmes et problèmes d'appartenance
	Automates finis
	Transducteurs finis
	Problèmes d'appartenance pour les transducteurs
	Contributions de ce manuscrit
	Plan chapitre par chapitre

	Introduction
	Program optimization and class membership problems
	Finite automata
	Finite transducers
	Class membership problems for finite transducers
	Contributions of this manuscript
	Chapter by chapter outline

	How to read this document
	I Optimization of pebble transducers
	Background on transductions of finite words
	One-way transductions
	Sequential functions
	Rational functions

	Regular functions
	Two-way transducers
	Normalization and origin semantics
	Two-way transducers with lookarounds
	Basic properties of regular functions

	Polyregular functions
	Pebble transducers
	Robustness and variants of the model
	Basic properties of polyregular functions
	Asymptotic growth and optimization

	From monoid morphisms to factorization forests
	Monoids and crossing sequences of two-way transducers
	Transition morphisms of two-way transducers
	Crossing sequences and productions

	Applications: pumping lemmas for two-way transducers
	Deciding if a regular function has finite image
	A pumping lemma for regular functions

	Factorization forests
	Simon's theorem
	Iterable nodes and skeletons
	Node dependence

	Making pebbles invisible: blind and last pebble transducers
	Blind and last pebble transducers
	Blind pebble transducers
	Last pebble transducers
	Optimization theorems and consequences

	Solving the optimization problem for blind transducers
	Pumpable transducers and asymptotic growth
	Removing a nested layer in a non-pumpable transducer

	Solving the optimization problem for last transducers
	Pumpable transducers and aymptotic growth
	Removing a nested layer in a non-pumpable transducer

	Discussion: beyond one visible pebble

	Streaming computations and marble transducers
	Marble transducers and recursion
	Marble transducers
	Recursive marble transducers
	Optimization theorems

	Streaming string transducers
	Streaming string transducers of finite words
	Equivalence with recursive marble transducers and consequences
	From streaming string transducers to recursive marble transducers
	From recursive marble transducers to streaming string transducers

	Layered streaming string transducers
	Copy restrictions for substitutions
	Equivalence with marble transducers
	From layered streaming string transducers to marble transducers
	From bounded to layered streaming string transducers

	Solving the optimization problem for streaming transducers
	From streaming string transducers to N-weighted automata
	Asymptotic growth of N-weighted automata
	Asymptotic growth in a DSST

	Discussion: recursion for other models

	II Class membership problems for commutative outputs
	Polyregular functions with commutative outputs
	Polyregular functions with commutative output
	Pebble transducers with commutative output
	Counting transducers
	Equivalence between pebbles, marbles and counting

	Rational series and membership problems
	Combinators for rational series
	S-polyregular functions as S-rational series
	Optimization theorem for S-polyregular functions

	Productions of counting transducers
	Productions over multisets of positions
	Productions over contexts
	Iterators and pumping lemmas

	Factorization forests for counting transducers
	Productions on multisets of nodes
	Productions on dependent multisets
	Productions on independent multisets

	Solving the optimization problem for counting transducers
	Discussion: from Z-polyregular to N-polyregular

	Polyblind functions with commutative output
	Polyblind functions with commutative output
	Blind pebble transducers with commutative output
	Blind counting transducers
	S-polyblind functions as S-rational series

	Membership problem for S-polyblind functions
	Repetitive functions
	Decidability result of S-polyblind inside S-polyregular

	Repetitive functions and permutable counting transducers
	Polyblind functions are repetitive
	Repetitive functions are computed by permutable transducers

	Architectures and independent multisets
	From linearizations to architectures
	Productions on architectures
	Counting the number of architectures
	Decomposing the independent sum

	Solving the S-polyblind membership problem

	Star-free polyregular functions with commutative output
	Star-free polyregular functions with commutative output
	Aperiodic pebble transducers
	Aperiodic counting transducers
	Star-free S-polyregular functions as S-rational series

	Membership problem for star-free Z-polyregular functions
	Smooth functions
	Decidability result of star-free inside Z-polyregular

	Residual transducers for Z-polyregular functions
	Residuals of a function
	Suffix deterministic transducers
	Residual transducers

	Smooth functions and aperiodic residual transducers
	Star-free functions are smooth
	Smooth functions are computed by aperiodic residual transducers

	Solving the star-free membership problem
	Aperiodicity through the lens of eigenvalues
	Spectra for Z-polyregular functions
	Spectra for star-free Z-polyregular functions

	Discussion: deciding star-freeness for other monoids
	Star-free N-polyregular functions
	Star-free regular functions

	III Streaming computability over infinite words
	Background on transductions of infinite words
	One-way transductions
	Sequential functions
	Rational functions

	Regular and deterministic regular functions
	Two-way transducers
	Two-way transducers with -lookaround

	Computability and continuity

	Deterministic regular functions of infinite words
	Two-way transducers with finite lookarounds
	Finite lookarounds
	Lookbehinds and finite lookaheads

	Streaming string transducers of infinite words
	Streaming string transducers of infinite words
	Domains and final conditions
	From copyless streaming string transducers to two-way transducers
	From two-way transducers to bounded streaming string transducers

	From bounded to copyless streaming string transducers
	Properties of copies
	Toolbox: manipulating bounded substitutions
	Construction of the copyless streaming string transducer
	Correctness of the construction

	Removing finite lookaheads via streaming string transducers
	Lookahead informations
	Construction of the streaming string transducer
	Correctness of the construction

	Composition of deterministic regular functions
	Decomposition of deterministic regular functions
	Forward factorization forests
	A class of functions closed under composition
	Inductive construction of the runs
	Decomposing deterministic regular functions

	Discussion: pebbles and marbles of infinite words

	Determinization of continuous rational functions
	Continuity of rational functions
	Two-way determinization of continuous rational functions
	Continuity and twinning property

	Overall description of the determinization process
	Computing compatible sets
	Computing trees
	Computing the output

	Computing compatible sets
	Properties of compatible sets
	Common part and advances
	Separable compatible sets
	Looping futures in separable sets

	Computing (,)-trees from compatible sets
	Information stored by the one-way transducer
	Updates of the one-way transducer
	Correctness of the construction

	Computing -trees from (,)-trees
	Computing the output from -trees
	Information stored by the streaming string transducer
	Updates of the streaming string transducer
	Correctness of the construction

	Discussion: uniformly continuous rational functions

	Outlook
	Index
	List of Figures
	Bibliography

